基于拉格朗日乘法器的二进制MIMO系统低复杂度检测

Wenlong Liu, Nana Sun, Minglu Jin, Shuxue Ding
{"title":"基于拉格朗日乘法器的二进制MIMO系统低复杂度检测","authors":"Wenlong Liu, Nana Sun, Minglu Jin, Shuxue Ding","doi":"10.1109/ICAWST.2013.6765489","DOIUrl":null,"url":null,"abstract":"Maximum-likelihood (ML) detection for binary Multiple-Input-Multiple-Output (MIMO) systems can be posed as a binary quadratic programming (BQP) which belongs to a nondeterministic polynomial-time hard (NP-hard) problem in general. In this paper, we translate the binary constraints of BQP into the equivalent quadratic equality constraints and employ the Lagrange multipliers method to deal these equivalent constraints. We derive the relation among the Lagrange multiplier, transmitting signal and noise. Since both transmitting signal and noise are unknown, it is impossible to solve the Lagrange multipliers exactly. However, in this paper, an estimation method is proposed to obtain the approximations of the Lagrange multipliers with low computational complexity. Numerical experiments show that the performance of the proposed method is very near to that of the ML detection.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"13 1","pages":"486-491"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A low complexity detection for the binary MIMO system using Lagrange multipliers\",\"authors\":\"Wenlong Liu, Nana Sun, Minglu Jin, Shuxue Ding\",\"doi\":\"10.1109/ICAWST.2013.6765489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum-likelihood (ML) detection for binary Multiple-Input-Multiple-Output (MIMO) systems can be posed as a binary quadratic programming (BQP) which belongs to a nondeterministic polynomial-time hard (NP-hard) problem in general. In this paper, we translate the binary constraints of BQP into the equivalent quadratic equality constraints and employ the Lagrange multipliers method to deal these equivalent constraints. We derive the relation among the Lagrange multiplier, transmitting signal and noise. Since both transmitting signal and noise are unknown, it is impossible to solve the Lagrange multipliers exactly. However, in this paper, an estimation method is proposed to obtain the approximations of the Lagrange multipliers with low computational complexity. Numerical experiments show that the performance of the proposed method is very near to that of the ML detection.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"13 1\",\"pages\":\"486-491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二元多输入-多输出(MIMO)系统的最大似然(ML)检测通常可以归结为一个二元二次规划(BQP)问题,它属于一个非确定性多项式-时间困难(NP-hard)问题。本文将BQP的二元约束转化为等价的二次等式约束,并利用拉格朗日乘子法处理这些等价约束。导出了拉格朗日乘子与发射信号和噪声之间的关系。由于发射信号和噪声都是未知的,所以不可能精确地解出拉格朗日乘子。然而,本文提出了一种计算复杂度较低的拉格朗日乘子近似的估计方法。数值实验表明,该方法的性能与机器学习检测非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low complexity detection for the binary MIMO system using Lagrange multipliers
Maximum-likelihood (ML) detection for binary Multiple-Input-Multiple-Output (MIMO) systems can be posed as a binary quadratic programming (BQP) which belongs to a nondeterministic polynomial-time hard (NP-hard) problem in general. In this paper, we translate the binary constraints of BQP into the equivalent quadratic equality constraints and employ the Lagrange multipliers method to deal these equivalent constraints. We derive the relation among the Lagrange multiplier, transmitting signal and noise. Since both transmitting signal and noise are unknown, it is impossible to solve the Lagrange multipliers exactly. However, in this paper, an estimation method is proposed to obtain the approximations of the Lagrange multipliers with low computational complexity. Numerical experiments show that the performance of the proposed method is very near to that of the ML detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信