Sasaki Einstein和近平行G2流形的线性不稳定性

U. Semmelmann, Changliang Wang, McKenzie Y. Wang
{"title":"Sasaki Einstein和近平行G2流形的线性不稳定性","authors":"U. Semmelmann, Changliang Wang, McKenzie Y. Wang","doi":"10.1142/s0129167x22500422","DOIUrl":null,"url":null,"abstract":"In this article we study the stability problem for the Einstein metrics on Sasaki Einstein and on complete nearly parallel ${\\rm G}_2$ manifolds. In the Sasaki case we show linear instability if the second Betti number is positive. Similarly we prove that nearly parallel $\\rm G_2$ manifolds with positive third Betti number are linearly unstable. Moreover, we prove linear instability for the Berger space ${\\rm SO}(5)/{\\rm SO}(3)_{irr} $ which is a $7$-dimensional homology sphere with a proper nearly parallel ${\\rm G}_2$ structure.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Linear instability of Sasaki Einstein and nearly parallel G2 manifolds\",\"authors\":\"U. Semmelmann, Changliang Wang, McKenzie Y. Wang\",\"doi\":\"10.1142/s0129167x22500422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the stability problem for the Einstein metrics on Sasaki Einstein and on complete nearly parallel ${\\\\rm G}_2$ manifolds. In the Sasaki case we show linear instability if the second Betti number is positive. Similarly we prove that nearly parallel $\\\\rm G_2$ manifolds with positive third Betti number are linearly unstable. Moreover, we prove linear instability for the Berger space ${\\\\rm SO}(5)/{\\\\rm SO}(3)_{irr} $ which is a $7$-dimensional homology sphere with a proper nearly parallel ${\\\\rm G}_2$ structure.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x22500422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x22500422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了Sasaki Einstein和完全近平行${\rm G}_2$流形上的爱因斯坦度量的稳定性问题。在Sasaki的情况下,如果第二个Betti数是正的,我们显示线性不稳定性。同样地,我们证明了具有正第三Betti数的近平行G_2流形是线性不稳定的。此外,我们证明了Berger空间${\rm SO}(5)/{\rm SO}(3)_{irr} $的线性不稳定性,该空间为$ $7维同调球,具有适当的近平行$ ${\rm G}_2$结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear instability of Sasaki Einstein and nearly parallel G2 manifolds
In this article we study the stability problem for the Einstein metrics on Sasaki Einstein and on complete nearly parallel ${\rm G}_2$ manifolds. In the Sasaki case we show linear instability if the second Betti number is positive. Similarly we prove that nearly parallel $\rm G_2$ manifolds with positive third Betti number are linearly unstable. Moreover, we prove linear instability for the Berger space ${\rm SO}(5)/{\rm SO}(3)_{irr} $ which is a $7$-dimensional homology sphere with a proper nearly parallel ${\rm G}_2$ structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信