{"title":"面向字典学习的块和组正则化稀疏建模","authors":"Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, J. Ho","doi":"10.1109/CVPR.2013.55","DOIUrl":null,"url":null,"abstract":"This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"377-382"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Block and Group Regularized Sparse Modeling for Dictionary Learning\",\"authors\":\"Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, J. Ho\",\"doi\":\"10.1109/CVPR.2013.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"11 1\",\"pages\":\"377-382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Block and Group Regularized Sparse Modeling for Dictionary Learning
This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.