面向字典学习的块和组正则化稀疏建模

Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, J. Ho
{"title":"面向字典学习的块和组正则化稀疏建模","authors":"Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, J. Ho","doi":"10.1109/CVPR.2013.55","DOIUrl":null,"url":null,"abstract":"This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"377-382"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Block and Group Regularized Sparse Modeling for Dictionary Learning\",\"authors\":\"Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, J. Ho\",\"doi\":\"10.1109/CVPR.2013.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"11 1\",\"pages\":\"377-382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文提出了一种字典学习框架,该框架将提出的块/组(BGSC)或重构块/组(R-BGSC)稀疏编码方案与新的块内相干抑制字典学习算法相结合。所提出的框架的一个重要和显著的特征是,所有的字典块都是相对于每个数据组同时训练的,而块内一致性被明确地最小化作为一个重要目标。我们为这一特征提供了经验证据和启发式支持,这可以被认为是在学习过程中结合输入数据的组结构和字典的块结构的直接结果。采用分块梯度下降法可以有效地解决字典学习和稀疏编码的优化问题,并给出了具体的优化算法。我们使用已知的数据集评估了所提出的方法,并与最先进的字典学习方法进行了有利的比较,证明了所提出框架的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block and Group Regularized Sparse Modeling for Dictionary Learning
This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppression Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is that all dictionary blocks are trained simultaneously with respect to each data group while the intra-block coherence being explicitly minimized as an important objective. We provide both empirical evidence and heuristic support for this feature that can be considered as a direct consequence of incorporating both the group structure for the input data and the block structure for the dictionary in the learning process. The optimization problems for both the dictionary learning and sparse coding can be solved efficiently using block-gradient descent, and the details of the optimization algorithms are presented. We evaluate the proposed methods using well-known datasets, and favorable comparisons with state-of-the-art dictionary learning methods demonstrate the viability and validity of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信