R. P. Oliveira, J. Achcar, Charles Chen, Eliane R. Rodrigues
{"title":"非齐次泊松和线性回归模型作为研究具有变化点的时间序列的方法","authors":"R. P. Oliveira, J. Achcar, Charles Chen, Eliane R. Rodrigues","doi":"10.1080/23737484.2022.2056546","DOIUrl":null,"url":null,"abstract":"Abstract In this study we consider some stochastic models and a Bayesian approach to analyze count time series data in the presence of one or more change-points. When the observed count data are all different of zero, it is possible to perform an analysis using linear regression models with normal distribution errors for the log-transformed data. When we have the presence of zero counts at different times, the statistical model based on the log-transformation is not suitable. Hence, in this case, it is possible to consider non-homogeneous Poisson processes (NHPP) models with a suitable rate function. In the present work we consider both models (linear regression and Poisson) to analyze three data sets. These sets are data recording the monthly visitors to New Zealand with the purpose of education, yearly tuberculosis incidence data from New York City, and monthly measles incidence data from Brazil. When the NHPP model is used a PLP (power law process) model is assumed for the intensity function. Additionally, in both models, the presence of change-points will be allowed.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"72 1","pages":"331 - 353"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-homogeneous Poisson and linear regression models as approaches to study time series with change-points\",\"authors\":\"R. P. Oliveira, J. Achcar, Charles Chen, Eliane R. Rodrigues\",\"doi\":\"10.1080/23737484.2022.2056546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study we consider some stochastic models and a Bayesian approach to analyze count time series data in the presence of one or more change-points. When the observed count data are all different of zero, it is possible to perform an analysis using linear regression models with normal distribution errors for the log-transformed data. When we have the presence of zero counts at different times, the statistical model based on the log-transformation is not suitable. Hence, in this case, it is possible to consider non-homogeneous Poisson processes (NHPP) models with a suitable rate function. In the present work we consider both models (linear regression and Poisson) to analyze three data sets. These sets are data recording the monthly visitors to New Zealand with the purpose of education, yearly tuberculosis incidence data from New York City, and monthly measles incidence data from Brazil. When the NHPP model is used a PLP (power law process) model is assumed for the intensity function. Additionally, in both models, the presence of change-points will be allowed.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"72 1\",\"pages\":\"331 - 353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2022.2056546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2056546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Non-homogeneous Poisson and linear regression models as approaches to study time series with change-points
Abstract In this study we consider some stochastic models and a Bayesian approach to analyze count time series data in the presence of one or more change-points. When the observed count data are all different of zero, it is possible to perform an analysis using linear regression models with normal distribution errors for the log-transformed data. When we have the presence of zero counts at different times, the statistical model based on the log-transformation is not suitable. Hence, in this case, it is possible to consider non-homogeneous Poisson processes (NHPP) models with a suitable rate function. In the present work we consider both models (linear regression and Poisson) to analyze three data sets. These sets are data recording the monthly visitors to New Zealand with the purpose of education, yearly tuberculosis incidence data from New York City, and monthly measles incidence data from Brazil. When the NHPP model is used a PLP (power law process) model is assumed for the intensity function. Additionally, in both models, the presence of change-points will be allowed.