关于Riesz变换的维度弱型(1,1)界

Daniel Spector, Cody B. Stockdale
{"title":"关于Riesz变换的维度弱型(1,1)界","authors":"Daniel Spector, Cody B. Stockdale","doi":"10.1142/s0219199720500728","DOIUrl":null,"url":null,"abstract":"Let $R_j$ denote the $j^{\\text{th}}$ Riesz transform on $\\mathbb{R}^n$. We prove that there exists an absolute constant $C>0$ such that \\begin{align*} \n|\\{|R_jf|>\\lambda\\}|\\leq C\\left(\\frac{1}{\\lambda}\\|f\\|_{L^1(\\mathbb{R}^n)}+\\sup_{\\nu} |\\{|R_j\\nu|>\\lambda\\}|\\right) \\end{align*} for any $\\lambda>0$ and $f \\in L^1(\\mathbb{R}^n)$, where the above supremum is taken over measures of the form $\\nu=\\sum_{k=1}^Na_k\\delta_{c_k}$ for $N \\in \\mathbb{N}$, $c_k \\in \\mathbb{R}^n$, and $a_k \\in \\mathbb{R}^+$ with $\\sum_{k=1}^N a_k \\leq 16\\|f\\|_{L^1(\\mathbb{R}^n)}$. This shows that to establish dimensional estimates for the weak-type $(1,1)$ inequality for the Riesz tranforms it suffices to study the corresponding weak-type inequality for Riesz transforms applied to a finite linear combination of Dirac masses. We use this fact to give a new proof of the best known dimensional upper bound, while our reduction result also applies to a more general class of Calderon-Zygmund operators.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dimensional weak-type (1,1) bound for Riesz transforms\",\"authors\":\"Daniel Spector, Cody B. Stockdale\",\"doi\":\"10.1142/s0219199720500728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R_j$ denote the $j^{\\\\text{th}}$ Riesz transform on $\\\\mathbb{R}^n$. We prove that there exists an absolute constant $C>0$ such that \\\\begin{align*} \\n|\\\\{|R_jf|>\\\\lambda\\\\}|\\\\leq C\\\\left(\\\\frac{1}{\\\\lambda}\\\\|f\\\\|_{L^1(\\\\mathbb{R}^n)}+\\\\sup_{\\\\nu} |\\\\{|R_j\\\\nu|>\\\\lambda\\\\}|\\\\right) \\\\end{align*} for any $\\\\lambda>0$ and $f \\\\in L^1(\\\\mathbb{R}^n)$, where the above supremum is taken over measures of the form $\\\\nu=\\\\sum_{k=1}^Na_k\\\\delta_{c_k}$ for $N \\\\in \\\\mathbb{N}$, $c_k \\\\in \\\\mathbb{R}^n$, and $a_k \\\\in \\\\mathbb{R}^+$ with $\\\\sum_{k=1}^N a_k \\\\leq 16\\\\|f\\\\|_{L^1(\\\\mathbb{R}^n)}$. This shows that to establish dimensional estimates for the weak-type $(1,1)$ inequality for the Riesz tranforms it suffices to study the corresponding weak-type inequality for Riesz transforms applied to a finite linear combination of Dirac masses. We use this fact to give a new proof of the best known dimensional upper bound, while our reduction result also applies to a more general class of Calderon-Zygmund operators.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199720500728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199720500728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$R_j$表示$\mathbb{R}^n$上的$j^{\text{th}}$ Riesz变换。我们证明了存在一个绝对常数$C>0$,使得$\lambda>0$和$f \in L^1(\mathbb{R}^n)$的\begin{align*} |\{|R_jf|>\lambda\}|\leq C\left(\frac{1}{\lambda}\|f\|_{L^1(\mathbb{R}^n)}+\sup_{\nu} |\{|R_j\nu|>\lambda\}|\right) \end{align*},其中上述至上被$N \in \mathbb{N}$、$c_k \in \mathbb{R}^n$和$a_k \in \mathbb{R}^+$的$\nu=\sum_{k=1}^Na_k\delta_{c_k}$形式的措施取代为$\sum_{k=1}^N a_k \leq 16\|f\|_{L^1(\mathbb{R}^n)}$。这表明,为了建立Riesz变换的弱型$(1,1)$不等式的量纲估计,研究应用于Dirac质量有限线性组合的Riesz变换的相应弱型不等式就足够了。我们利用这一事实给出了最著名的维数上界的一个新的证明,同时我们的约简结果也适用于一类更一般的Calderon-Zygmund算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the dimensional weak-type (1,1) bound for Riesz transforms
Let $R_j$ denote the $j^{\text{th}}$ Riesz transform on $\mathbb{R}^n$. We prove that there exists an absolute constant $C>0$ such that \begin{align*} |\{|R_jf|>\lambda\}|\leq C\left(\frac{1}{\lambda}\|f\|_{L^1(\mathbb{R}^n)}+\sup_{\nu} |\{|R_j\nu|>\lambda\}|\right) \end{align*} for any $\lambda>0$ and $f \in L^1(\mathbb{R}^n)$, where the above supremum is taken over measures of the form $\nu=\sum_{k=1}^Na_k\delta_{c_k}$ for $N \in \mathbb{N}$, $c_k \in \mathbb{R}^n$, and $a_k \in \mathbb{R}^+$ with $\sum_{k=1}^N a_k \leq 16\|f\|_{L^1(\mathbb{R}^n)}$. This shows that to establish dimensional estimates for the weak-type $(1,1)$ inequality for the Riesz tranforms it suffices to study the corresponding weak-type inequality for Riesz transforms applied to a finite linear combination of Dirac masses. We use this fact to give a new proof of the best known dimensional upper bound, while our reduction result also applies to a more general class of Calderon-Zygmund operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信