紧3-流形的无限补全、上同调和JSJ分解

Q4 Mathematics
G. Wilkes
{"title":"紧3-流形的无限补全、上同调和JSJ分解","authors":"G. Wilkes","doi":"10.17863/CAM.37668","DOIUrl":null,"url":null,"abstract":"In this paper we extend previous results concerning the behaviour of JSJ decompositions of closed 3-manifolds with respect to the profinite completion to the case of compact 3-manifolds with boundary. \nWe also illustrate an alternative and perhaps more natural approach to part of the original theorem, using relative cohomology to analyse the actions of an-annular atoroidal group pairs on profinite trees. \n ","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Profinite Completions, Cohomology and JSJ Decompositions of Compact 3-Manifolds\",\"authors\":\"G. Wilkes\",\"doi\":\"10.17863/CAM.37668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend previous results concerning the behaviour of JSJ decompositions of closed 3-manifolds with respect to the profinite completion to the case of compact 3-manifolds with boundary. \\nWe also illustrate an alternative and perhaps more natural approach to part of the original theorem, using relative cohomology to analyse the actions of an-annular atoroidal group pairs on profinite trees. \\n \",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17863/CAM.37668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.37668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

本文将以往关于闭3流形的JSJ分解在无限补齐下的行为的结果推广到有边界的紧3流形的情况。我们还说明了另一种可能更自然的方法来部分原始定理,使用相对上同调来分析无限树上的环向群对的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profinite Completions, Cohomology and JSJ Decompositions of Compact 3-Manifolds
In this paper we extend previous results concerning the behaviour of JSJ decompositions of closed 3-manifolds with respect to the profinite completion to the case of compact 3-manifolds with boundary. We also illustrate an alternative and perhaps more natural approach to part of the original theorem, using relative cohomology to analyse the actions of an-annular atoroidal group pairs on profinite trees.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信