{"title":"高阶演化不等式解的镇定性","authors":"A. Kon'kov, A. Shishkov","doi":"10.3233/asy-191522","DOIUrl":null,"url":null,"abstract":"We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \\sum_{|\\alpha| = m} \n\\partial^\\alpha \na_\\alpha (x, t, u) \n- \nu_t \n\\ge \nf (x, t) g (u) \n\\quad \n\\mbox{in} {\\mathbb R}_+^{n+1} = {\\mathbb R}^n \\times (0, \\infty), \n\\quad \nm,n \\ge 1, $$ stabilizes to zero as $t \\to \\infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"17 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On stabilization of solutions of higher order evolution inequalities\",\"authors\":\"A. Kon'kov, A. Shishkov\",\"doi\":\"10.3233/asy-191522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \\\\sum_{|\\\\alpha| = m} \\n\\\\partial^\\\\alpha \\na_\\\\alpha (x, t, u) \\n- \\nu_t \\n\\\\ge \\nf (x, t) g (u) \\n\\\\quad \\n\\\\mbox{in} {\\\\mathbb R}_+^{n+1} = {\\\\mathbb R}^n \\\\times (0, \\\\infty), \\n\\\\quad \\nm,n \\\\ge 1, $$ stabilizes to zero as $t \\\\to \\\\infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"17 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-191522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-191522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On stabilization of solutions of higher order evolution inequalities
We obtain sharp conditions guaranteeing that every non-negative weak solution of the inequality $$ \sum_{|\alpha| = m}
\partial^\alpha
a_\alpha (x, t, u)
-
u_t
\ge
f (x, t) g (u)
\quad
\mbox{in} {\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty),
\quad
m,n \ge 1, $$ stabilizes to zero as $t \to \infty$. These conditions generalize the well-known Keller-Osserman condition on the grows of the function $g$ at infinity.