自由亚元群中的丢番图密码学:理论基础

IF 0.1 Q4 MATHEMATICS
A. Myasnikov, V. Roman’kov
{"title":"自由亚元群中的丢番图密码学:理论基础","authors":"A. Myasnikov, V. Roman’kov","doi":"10.1515/gcc-2014-0011","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study so-called Diophantine cryptology, a collection of cryptographic schemes where the computational security assumptions are based on hardness of solving some Diophantine equations, and some general ideas and techniques that occur in this area. In particular, we study an interesting variation of the endomorphism problem in groups, termed the double endomorphism problem. We prove that this problem is undecidable in free metabelian groups of sufficiently large rank. We relate this result to computational security assumptions of some group-based cryptosystems. In particular, we show how to improve the Grigoriev–Shpilrain's protocol to get a new computational security assumption based on the double endomorphism problem, providing a better theoretical foundation to security.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"60 1","pages":"103 - 120"},"PeriodicalIF":0.1000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diophantine cryptography in free metabelian groups: Theoretical base\",\"authors\":\"A. Myasnikov, V. Roman’kov\",\"doi\":\"10.1515/gcc-2014-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study so-called Diophantine cryptology, a collection of cryptographic schemes where the computational security assumptions are based on hardness of solving some Diophantine equations, and some general ideas and techniques that occur in this area. In particular, we study an interesting variation of the endomorphism problem in groups, termed the double endomorphism problem. We prove that this problem is undecidable in free metabelian groups of sufficiently large rank. We relate this result to computational security assumptions of some group-based cryptosystems. In particular, we show how to improve the Grigoriev–Shpilrain's protocol to get a new computational security assumption based on the double endomorphism problem, providing a better theoretical foundation to security.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"60 1\",\"pages\":\"103 - 120\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文研究了所谓的丢番图密码学(Diophantine cryptoology),它是一种加密方案的集合,其计算安全性假设是基于求解某些丢番图方程的硬度,以及在该领域出现的一些一般思想和技术。特别地,我们研究了群自同态问题的一个有趣的变化,称为双自同态问题。我们证明了这个问题在足够大秩的自由亚群中是不可判定的。我们将这一结果与一些基于群的密码系统的计算安全性假设联系起来。特别地,我们展示了如何改进Grigoriev-Shpilrain协议,得到一个基于双自同态问题的新的计算安全性假设,为安全性提供了更好的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine cryptography in free metabelian groups: Theoretical base
Abstract In this paper we study so-called Diophantine cryptology, a collection of cryptographic schemes where the computational security assumptions are based on hardness of solving some Diophantine equations, and some general ideas and techniques that occur in this area. In particular, we study an interesting variation of the endomorphism problem in groups, termed the double endomorphism problem. We prove that this problem is undecidable in free metabelian groups of sufficiently large rank. We relate this result to computational security assumptions of some group-based cryptosystems. In particular, we show how to improve the Grigoriev–Shpilrain's protocol to get a new computational security assumption based on the double endomorphism problem, providing a better theoretical foundation to security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信