A. Ballester-Bolinches, R. Esteban-Romero, V. Pérez-Calabuig
{"title":"斜左括号的Jordan-Hölder定理及其在Yang-Baxter方程多置换解中的应用","authors":"A. Ballester-Bolinches, R. Esteban-Romero, V. Pérez-Calabuig","doi":"10.1017/prm.2023.37","DOIUrl":null,"url":null,"abstract":"Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"112 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Jordan–Hölder theorem for skew left braces and their applications to multipermutation solutions of the Yang–Baxter equation\",\"authors\":\"A. Ballester-Bolinches, R. Esteban-Romero, V. Pérez-Calabuig\",\"doi\":\"10.1017/prm.2023.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.37\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.37","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Jordan–Hölder theorem for skew left braces and their applications to multipermutation solutions of the Yang–Baxter equation
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.