SAR自动目标识别的情境辅助虚警降低

S. Mathieu-Marni, S. Kuttikkad, R. Chellappa
{"title":"SAR自动目标识别的情境辅助虚警降低","authors":"S. Mathieu-Marni, S. Kuttikkad, R. Chellappa","doi":"10.1109/ICIP.1997.648108","DOIUrl":null,"url":null,"abstract":"This paper introduces techniques for context-aided false alarm reduction for automatic target recognition (ATR) in airborne synthetic aperture radar (SAR) images. Candidate target pixels are identified using constant false alarm rate (CFAR) detection. If only a single radar image is available, a 2-D site model is constructed and used to determine regions inhospitable to targets. In multipass imagery, false alarm reduction is based on consistent appearance of the target blob in two or more images after registration. Finally, a target-versus-clutter discrimination based on size, shape and intensity features further reduces false alarms in preparation for target recognition algorithms.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"4 1","pages":"885-888 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Context-aided false alarm reduction for SAR automatic target recognition\",\"authors\":\"S. Mathieu-Marni, S. Kuttikkad, R. Chellappa\",\"doi\":\"10.1109/ICIP.1997.648108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces techniques for context-aided false alarm reduction for automatic target recognition (ATR) in airborne synthetic aperture radar (SAR) images. Candidate target pixels are identified using constant false alarm rate (CFAR) detection. If only a single radar image is available, a 2-D site model is constructed and used to determine regions inhospitable to targets. In multipass imagery, false alarm reduction is based on consistent appearance of the target blob in two or more images after registration. Finally, a target-versus-clutter discrimination based on size, shape and intensity features further reduces false alarms in preparation for target recognition algorithms.\",\"PeriodicalId\":92344,\"journal\":{\"name\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"volume\":\"4 1\",\"pages\":\"885-888 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1997.648108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.648108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了机载合成孔径雷达(SAR)图像自动目标识别(ATR)的情境辅助虚警降低技术。候选目标像素使用恒定虚警率(CFAR)检测识别。如果只有单幅雷达图像可用,则构建二维站点模型并用于确定不适合目标的区域。在多通道图像中,减少误报是基于配准后两幅或多幅图像中目标斑点的一致外观。最后,基于大小、形状和强度特征的目标与杂波区分进一步减少误报,为目标识别算法做准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-aided false alarm reduction for SAR automatic target recognition
This paper introduces techniques for context-aided false alarm reduction for automatic target recognition (ATR) in airborne synthetic aperture radar (SAR) images. Candidate target pixels are identified using constant false alarm rate (CFAR) detection. If only a single radar image is available, a 2-D site model is constructed and used to determine regions inhospitable to targets. In multipass imagery, false alarm reduction is based on consistent appearance of the target blob in two or more images after registration. Finally, a target-versus-clutter discrimination based on size, shape and intensity features further reduces false alarms in preparation for target recognition algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信