基于深度学习方法的红树林树种识别

IF 1.2 Q3 ENGINEERING, MULTIDISCIPLINARY
Paranita Asnur, R. Kosasih, S. Madenda, Dewi A. Rahayu
{"title":"基于深度学习方法的红树林树种识别","authors":"Paranita Asnur, R. Kosasih, S. Madenda, Dewi A. Rahayu","doi":"10.11591/ijaas.v12.i2.pp163-170","DOIUrl":null,"url":null,"abstract":"Artificial intelligence can help classify plants to make identification easier for everyone. This technology can be used to classify mangrove trees. The degradation of mangrove forests has resulted in a 20% loss of biodiversity, an 80% loss of microbial decomposers, reduced C-organic soil, and fish spawning grounds, resulting in estimated losses in the ecological and economic fields for up to IDR 39 billion. The identification of different mangrove species is the first step in ensuring the preservation of these forests. Therefore, this research aimed to develop algorithms and a convolutional neural network (CNN) architecture to classify mangrove tree species with the highest possible accuracy using Python software. The architecture selection for this model includes a batch size of 32, an input image size of 128x128 pixels, four classes, four convolution layers, four rectified linear unit (ReLU) layers, 2x2 max-pooling, and two fully connected layers (FCL). The finding showed that the resulting accuracy from the test was 97.50%, while the validation test was 81.25%, applied to four types of mangrove leaves, including Avicenia marina, Avicenia officialis, Rizophora apiculata, and Soneratia caseolaris.","PeriodicalId":44367,"journal":{"name":"International Journal of Advances in Engineering Sciences and Applied Mathematics","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of mangrove tree species using deep learning method\",\"authors\":\"Paranita Asnur, R. Kosasih, S. Madenda, Dewi A. Rahayu\",\"doi\":\"10.11591/ijaas.v12.i2.pp163-170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence can help classify plants to make identification easier for everyone. This technology can be used to classify mangrove trees. The degradation of mangrove forests has resulted in a 20% loss of biodiversity, an 80% loss of microbial decomposers, reduced C-organic soil, and fish spawning grounds, resulting in estimated losses in the ecological and economic fields for up to IDR 39 billion. The identification of different mangrove species is the first step in ensuring the preservation of these forests. Therefore, this research aimed to develop algorithms and a convolutional neural network (CNN) architecture to classify mangrove tree species with the highest possible accuracy using Python software. The architecture selection for this model includes a batch size of 32, an input image size of 128x128 pixels, four classes, four convolution layers, four rectified linear unit (ReLU) layers, 2x2 max-pooling, and two fully connected layers (FCL). The finding showed that the resulting accuracy from the test was 97.50%, while the validation test was 81.25%, applied to four types of mangrove leaves, including Avicenia marina, Avicenia officialis, Rizophora apiculata, and Soneratia caseolaris.\",\"PeriodicalId\":44367,\"journal\":{\"name\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v12.i2.pp163-170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Engineering Sciences and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v12.i2.pp163-170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

人工智能可以帮助植物分类,使每个人都更容易识别。这项技术可以用来对红树林进行分类。红树林的退化导致生物多样性损失20%,微生物分解者损失80%,碳有机土壤和鱼类产卵地减少,估计在生态和经济领域造成的损失高达390亿印尼盾。识别不同的红树林物种是确保这些森林得到保护的第一步。因此,本研究旨在开发算法和卷积神经网络(CNN)架构,使用Python软件以尽可能高的准确率对红树林树种进行分类。该模型的架构选择包括批处理大小为32,输入图像大小为128 × 128像素,四个类,四个卷积层,四个整流线性单元(ReLU)层,2x2最大池化和两个完全连接层(FCL)。结果表明,该方法对4种红树叶片(黄杉、黄杉、尖刺梨和砂索)的准确度为97.50%,验证率为81.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of mangrove tree species using deep learning method
Artificial intelligence can help classify plants to make identification easier for everyone. This technology can be used to classify mangrove trees. The degradation of mangrove forests has resulted in a 20% loss of biodiversity, an 80% loss of microbial decomposers, reduced C-organic soil, and fish spawning grounds, resulting in estimated losses in the ecological and economic fields for up to IDR 39 billion. The identification of different mangrove species is the first step in ensuring the preservation of these forests. Therefore, this research aimed to develop algorithms and a convolutional neural network (CNN) architecture to classify mangrove tree species with the highest possible accuracy using Python software. The architecture selection for this model includes a batch size of 32, an input image size of 128x128 pixels, four classes, four convolution layers, four rectified linear unit (ReLU) layers, 2x2 max-pooling, and two fully connected layers (FCL). The finding showed that the resulting accuracy from the test was 97.50%, while the validation test was 81.25%, applied to four types of mangrove leaves, including Avicenia marina, Avicenia officialis, Rizophora apiculata, and Soneratia caseolaris.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
期刊介绍: International Journal of Advances in Engineering Sciences and Applied Mathematics will be a thematic journal, where each issue will be dedicated to a specific area of engineering and applied mathematics. The journal will accept original articles and will also publish review article that summarize the state of the art and provide a perspective on areas of current research interest.Articles that contain purely theoretical results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信