具有多重泛函时滞的高阶中立型微分方程在导数算子下的振荡行为

IF 0.5 Q3 MATHEMATICS
R. Rath, K. C. Panda, S. Rath
{"title":"具有多重泛函时滞的高阶中立型微分方程在导数算子下的振荡行为","authors":"R. Rath, K. C. Panda, S. Rath","doi":"10.5817/am2022-2-65","DOIUrl":null,"url":null,"abstract":". In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation oscillates or tends to zero as t → ∞ , where, n ≥ 1 is any positive integer, p i , r i ∈ C ( n ) ([0 , ∞ ) , R ) and p i are bounded for each i = 1 , 2 ,...,k . Further, f ∈ C ([0 , ∞ ) , R ), g , h , v , u ∈ C ([0 , ∞ ) , [0 , ∞ )), G and H ∈ C ( R , R ). The functional delays r i ( t ) ≤ t , g ( t ) ≤ t and h ( t ) ≤ t and all of them approach ∞ as t → ∞ . The results hold when u ≡ 0 and f ( t ) ≡ 0. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator\",\"authors\":\"R. Rath, K. C. Panda, S. Rath\",\"doi\":\"10.5817/am2022-2-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation oscillates or tends to zero as t → ∞ , where, n ≥ 1 is any positive integer, p i , r i ∈ C ( n ) ([0 , ∞ ) , R ) and p i are bounded for each i = 1 , 2 ,...,k . Further, f ∈ C ([0 , ∞ ) , R ), g , h , v , u ∈ C ([0 , ∞ ) , [0 , ∞ )), G and H ∈ C ( R , R ). The functional delays r i ( t ) ≤ t , g ( t ) ≤ t and h ( t ) ≤ t and all of them approach ∞ as t → ∞ . The results hold when u ≡ 0 and f ( t ) ≡ 0. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-2-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-2-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 本文给出了中立型时滞微分方程在t→∞时的所有解振荡或趋近于零的充分条件,其中,n≥1是任意正整数,p i, r i∈C (n)([0,∞),r), p i对每一个i = 1,2,…, k。此外,f∈C([0,∞),R), g, h, v, u C∈([0,∞),[0,∞)),g和h∈C (R, R)。函数时滞r i (t)≤t, g (t)≤t, h (t)≤t,均在t→∞时趋于∞。当u≡0且f (t)≡0时,结果成立。本文扩展、概括和改进了最近的一些结果,并进一步回答了文献中一些未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
. In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation oscillates or tends to zero as t → ∞ , where, n ≥ 1 is any positive integer, p i , r i ∈ C ( n ) ([0 , ∞ ) , R ) and p i are bounded for each i = 1 , 2 ,...,k . Further, f ∈ C ([0 , ∞ ) , R ), g , h , v , u ∈ C ([0 , ∞ ) , [0 , ∞ )), G and H ∈ C ( R , R ). The functional delays r i ( t ) ≤ t , g ( t ) ≤ t and h ( t ) ≤ t and all of them approach ∞ as t → ∞ . The results hold when u ≡ 0 and f ( t ) ≡ 0. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信