多维分数布朗运动自交局部时间的导数

Pub Date : 2015-05-12 DOI:10.1080/17442508.2015.1019883
Litan Yan, Xianye Yu
{"title":"多维分数布朗运动自交局部时间的导数","authors":"Litan Yan, Xianye Yu","doi":"10.1080/17442508.2015.1019883","DOIUrl":null,"url":null,"abstract":"Let be a fractional Brownian motion taking values in with Hurst index . In this paper, we consider the self-intersection local time and its derivative in the spatial variable . In particular, we introduce the so-called integrated quadratic covariation and show that the Bouleau-Yor type identityholds for some suitable .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Derivative for self-intersection local time of multidimensional fractional Brownian motion\",\"authors\":\"Litan Yan, Xianye Yu\",\"doi\":\"10.1080/17442508.2015.1019883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a fractional Brownian motion taking values in with Hurst index . In this paper, we consider the self-intersection local time and its derivative in the spatial variable . In particular, we introduce the so-called integrated quadratic covariation and show that the Bouleau-Yor type identityholds for some suitable .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2015.1019883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1019883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

设一个分数布朗运动,取赫斯特指数的值。本文考虑自交局部时间及其在空间变量上的导数。特别地,我们引入了所谓的积分二次共变,并证明了对于一些合适的函数,Bouleau-Yor型恒等式成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Derivative for self-intersection local time of multidimensional fractional Brownian motion
Let be a fractional Brownian motion taking values in with Hurst index . In this paper, we consider the self-intersection local time and its derivative in the spatial variable . In particular, we introduce the so-called integrated quadratic covariation and show that the Bouleau-Yor type identityholds for some suitable .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信