{"title":"具有随机波动的平稳多自相似随机场","authors":"Almut E. D. Veraart","doi":"10.1080/17442508.2015.1012081","DOIUrl":null,"url":null,"abstract":"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stationary and multi-self-similar random fields with stochastic volatility\",\"authors\":\"Almut E. D. Veraart\",\"doi\":\"10.1080/17442508.2015.1012081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2015.1012081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1012081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stationary and multi-self-similar random fields with stochastic volatility
This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.