具有随机波动的平稳多自相似随机场

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Almut E. D. Veraart
{"title":"具有随机波动的平稳多自相似随机场","authors":"Almut E. D. Veraart","doi":"10.1080/17442508.2015.1012081","DOIUrl":null,"url":null,"abstract":"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"32 1","pages":"848 - 870"},"PeriodicalIF":0.8000,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stationary and multi-self-similar random fields with stochastic volatility\",\"authors\":\"Almut E. D. Veraart\",\"doi\":\"10.1080/17442508.2015.1012081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"32 1\",\"pages\":\"848 - 870\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2015.1012081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2015.1012081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

介绍了具有G型边际律的考虑随机波动的平稳随机场和多自相似随机场。利用波动调制混合移动平均场构造了平稳随机场,并讨论了它们的概率性质。此外,本文还提出了两种参数化加权函数的方法:一种方法是基于傅立叶技术,旨在再现给定的相关结构,另一种方法是基于随机偏微分方程的思想。此外,利用广义Lamperti变换构造了具有G型分布的波动性调制多自相似随机场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary and multi-self-similar random fields with stochastic volatility
This paper introduces stationary and multi-self-similar random fields which account for stochastic volatility and have type G marginal law. The stationary random fields are constructed using volatility modulated mixed moving average (MA) fields and their probabilistic properties are discussed. Also, two methods for parameterizing the weight functions in the MA representation are presented: one method is based on Fourier techniques and aims at reproducing a given correlation structure, the other method is based on ideas from stochastic partial differential equations. Moreover, using a generalized Lamperti transform we construct volatility modulated multi-self-similar random fields which have type G distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects. Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly. In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信