{"title":"具有性能和隐私增强分类的数据分析","authors":"R. Tajanpure, A. Muddana","doi":"10.1515/jisys-2022-0215","DOIUrl":null,"url":null,"abstract":"Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"102 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data analysis with performance and privacy enhanced classification\",\"authors\":\"R. Tajanpure, A. Muddana\",\"doi\":\"10.1515/jisys-2022-0215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data analysis with performance and privacy enhanced classification
Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.