具有性能和隐私增强分类的数据分析

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
R. Tajanpure, A. Muddana
{"title":"具有性能和隐私增强分类的数据分析","authors":"R. Tajanpure, A. Muddana","doi":"10.1515/jisys-2022-0215","DOIUrl":null,"url":null,"abstract":"Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"102 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data analysis with performance and privacy enhanced classification\",\"authors\":\"R. Tajanpure, A. Muddana\",\"doi\":\"10.1515/jisys-2022-0215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

隐私是网络空间中主要关注的问题,因为用户在互联网上的每一次点击都被识别和分析,用于不同的目的,如信用卡购买记录、医疗记录、商业、个性化购物商店体验、决定营销策略等等。在这里,用户的个人信息被认为是一个风险过程。虽然数据挖掘应用程序关注的是统计上有用的模式,而不是个人的个人数据,但是存在对个人记录不受限制访问的威胁。在保证数据分类准确性和质量的同时,也要保证数据的保密性。对于实时应用程序,执行的数据分析应该具有时间效率。本文提出的基于卷积的隐私保护算法(C-PPA)在保护隐私的同时将输入转换为更低的维度,从而提高了挖掘精度。该算法通过不同的隐私保护指标(如准确性、精度、召回率和f1度量)进行评估。仿真结果表明,使用C-PPA的卷积神经网络(CNN)分类器与不使用C-PPA的分类器相比,准确率平均提高了14.15。提出了一种基于重叠-添加卷积的并行处理方法。结果表明,CNN的平均精度增量为12.49。分析表明,该算法在隐私保护、数据实用和性能方面具有优势。由于该算法致力于降低数据的维度,因此也降低了互联网上的通信成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data analysis with performance and privacy enhanced classification
Abstract Privacy is the main concern in cyberspace because, every single click of a user on Internet is recognized and analyzed for different purposes like credit card purchase records, healthcare records, business, personalized shopping store experience to the user, deciding marketing strategy, and the list goes on. Here, the user’s personal information is considered a risk process. Though data mining applications focus on statistically useful patterns and not on the personal data of individuals, there is a threat of unrestricted access to individual records. Also, it is necessary to maintain the secrecy of data while retaining the accuracy of data classification and quality as well. For real-time applications, the data analytics carried out should be time efficient. Here, the proposed Convolution-based Privacy Preserving Algorithm (C-PPA) transforms the input into lower dimensions while preserving privacy which leads to better mining accuracy. The proposed algorithm is evaluated over different privacy-preserving metrics like accuracy, precision, recall, and F1-measure. Simulations carried out show that the average increment in the accuracy of C-PPA is 14.15 for Convolutional Neural Network (CNN) classifier when compared with results without C-PPA. Overlap-add C-PPA is proposed for parallel processing which is based on overlap-add convolution. It shows an average accuracy increment of 12.49 for CNN. The analytics show that the algorithm benefits regarding privacy preservation, data utility, and performance. Since the algorithm works on lowering the dimensions of data, the communication cost over the Internet is also reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信