{"title":"荷兰地面燃料模型的初步发展","authors":"B. Oswald, Nienke Brouwer, E. Willemsen","doi":"10.4172/2168-9776.1000207","DOIUrl":null,"url":null,"abstract":"Estimating the spread of wildland fire is growing concern in the Netherlands, where fire events at the wildland urban interface is a growing concern with a changing climate. A multi-year project was initiated in 2012 to obtain field-based fuel measurements to be used to estimate wildland fire spread for surface fire. The overall objective was to develop either custom fuel models or utilize existing Northern American fuel models to fuel conditions in some of the hazardous vegetation in the Netherlands. Over a four-year period, 96 plots were established, a wide variety of fuel parameters measured, and ANOVA (p ≤ 0.1) and Duncan’s MRT used to place these into 56 different vegetation communities. Following multiple permutations in Behaveplus, the 56 communities were consolidated into 28 different fuel models. It was then attempted to use these fuel models as input variables in a Dutch-developed wildland fire spread model. Some fuel models produced similar fire spread, and since they were within relatively similar communities, were combined, resulting in 21 working fuel models. The results of this project will provide land managers, fire brigades and landowners more accurate wildland fire spread estimations, improving safety of the public in this densely populated country. The results of this project will contribute to more accurate and detailed calculations of the NBVM (Dutch wildfire spreadmodel). The NBVM will provide necessary information, to be able to reduce the risk on uncontrollable wildfires, via wildfire prevention measurements and during an incident, to support decision making.","PeriodicalId":35920,"journal":{"name":"林业科学研究","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Initial Development of Surface Fuel Models for The Netherlands\",\"authors\":\"B. Oswald, Nienke Brouwer, E. Willemsen\",\"doi\":\"10.4172/2168-9776.1000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the spread of wildland fire is growing concern in the Netherlands, where fire events at the wildland urban interface is a growing concern with a changing climate. A multi-year project was initiated in 2012 to obtain field-based fuel measurements to be used to estimate wildland fire spread for surface fire. The overall objective was to develop either custom fuel models or utilize existing Northern American fuel models to fuel conditions in some of the hazardous vegetation in the Netherlands. Over a four-year period, 96 plots were established, a wide variety of fuel parameters measured, and ANOVA (p ≤ 0.1) and Duncan’s MRT used to place these into 56 different vegetation communities. Following multiple permutations in Behaveplus, the 56 communities were consolidated into 28 different fuel models. It was then attempted to use these fuel models as input variables in a Dutch-developed wildland fire spread model. Some fuel models produced similar fire spread, and since they were within relatively similar communities, were combined, resulting in 21 working fuel models. The results of this project will provide land managers, fire brigades and landowners more accurate wildland fire spread estimations, improving safety of the public in this densely populated country. The results of this project will contribute to more accurate and detailed calculations of the NBVM (Dutch wildfire spreadmodel). The NBVM will provide necessary information, to be able to reduce the risk on uncontrollable wildfires, via wildfire prevention measurements and during an incident, to support decision making.\",\"PeriodicalId\":35920,\"journal\":{\"name\":\"林业科学研究\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"林业科学研究\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9776.1000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"林业科学研究","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2168-9776.1000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Initial Development of Surface Fuel Models for The Netherlands
Estimating the spread of wildland fire is growing concern in the Netherlands, where fire events at the wildland urban interface is a growing concern with a changing climate. A multi-year project was initiated in 2012 to obtain field-based fuel measurements to be used to estimate wildland fire spread for surface fire. The overall objective was to develop either custom fuel models or utilize existing Northern American fuel models to fuel conditions in some of the hazardous vegetation in the Netherlands. Over a four-year period, 96 plots were established, a wide variety of fuel parameters measured, and ANOVA (p ≤ 0.1) and Duncan’s MRT used to place these into 56 different vegetation communities. Following multiple permutations in Behaveplus, the 56 communities were consolidated into 28 different fuel models. It was then attempted to use these fuel models as input variables in a Dutch-developed wildland fire spread model. Some fuel models produced similar fire spread, and since they were within relatively similar communities, were combined, resulting in 21 working fuel models. The results of this project will provide land managers, fire brigades and landowners more accurate wildland fire spread estimations, improving safety of the public in this densely populated country. The results of this project will contribute to more accurate and detailed calculations of the NBVM (Dutch wildfire spreadmodel). The NBVM will provide necessary information, to be able to reduce the risk on uncontrollable wildfires, via wildfire prevention measurements and during an incident, to support decision making.
期刊介绍:
Forestry Research is a comprehensive academic journal of forestry science organized by the Chinese Academy of Forestry. The main task is to reflect the latest research results, academic papers and research reports, scientific and technological developments and information on forestry science mainly organized by the Chinese Academy of Forestry, to promote academic exchanges at home and abroad, to carry out academic discussions, to flourish forestry science, and to better serve China's forestry construction.
The main contents are: forest seeds, seedling afforestation, forest plants, forest genetic breeding, tree physiology and biochemistry, forest insects, resource insects, forest pathology, forest microorganisms, forest birds and animals, forest soil, forest ecology, forest management, forest manager, forestry remote sensing, forestry biotechnology and other new technologies, new methods, and to increase the development strategy of forestry, the trend of development of disciplines, technology policies and strategies, etc., and to increase the forestry development strategy, the trend of development of disciplines, technology policies and strategies. It is suitable for scientists and technicians of forestry and related disciplines, teachers and students of colleges and universities, leaders and managers, and grassroots forestry workers.