高光谱图像的不变性识别

G. Healey, D. Slater
{"title":"高光谱图像的不变性识别","authors":"G. Healey, D. Slater","doi":"10.1109/CVPR.1999.786975","DOIUrl":null,"url":null,"abstract":"The spectral radiance measured for a material by an airborne hyperspectral sensor depends strongly on. The illumination environment and the atmospheric conditions. This dependence has limited the success of material identification algorithms that rely exclusively on the information contained in hyperspectral image data. In this paper we use a comprehensive physical model to show that the set of observed 0.4-2.5 /spl mu/m spectral radiance vectors for a material lies in a lour-dimensional subspace of the hyperspectral measurement space. The physical model captures the dependence of reflected sunlight, reflected skylight, and path radiance terms on the scene geometry and on the distribution of atmospheric gases and aerosols over a wide range of conditions. Using the subspace model, we develop a local maximum likelihood algorithm for automated material identification that is invariant to illumination, atmospheric conditions, and the scene geometry. We demonstrate the invariant algorithm for the automated identification of material samples in HYDICE imagery acquired under different illumination and atmospheric conditions.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"2 1","pages":"438-443 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Invariant recognition in hyperspectral images\",\"authors\":\"G. Healey, D. Slater\",\"doi\":\"10.1109/CVPR.1999.786975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral radiance measured for a material by an airborne hyperspectral sensor depends strongly on. The illumination environment and the atmospheric conditions. This dependence has limited the success of material identification algorithms that rely exclusively on the information contained in hyperspectral image data. In this paper we use a comprehensive physical model to show that the set of observed 0.4-2.5 /spl mu/m spectral radiance vectors for a material lies in a lour-dimensional subspace of the hyperspectral measurement space. The physical model captures the dependence of reflected sunlight, reflected skylight, and path radiance terms on the scene geometry and on the distribution of atmospheric gases and aerosols over a wide range of conditions. Using the subspace model, we develop a local maximum likelihood algorithm for automated material identification that is invariant to illumination, atmospheric conditions, and the scene geometry. We demonstrate the invariant algorithm for the automated identification of material samples in HYDICE imagery acquired under different illumination and atmospheric conditions.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"2 1\",\"pages\":\"438-443 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

机载高光谱传感器测量材料的光谱辐亮度在很大程度上取决于。照明环境和大气条件。这种依赖限制了仅依赖于高光谱图像数据中包含的信息的材料识别算法的成功。在本文中,我们使用一个综合的物理模型表明,观测到的材料的0.4-2.5 /spl mu/m光谱辐射向量集位于高光谱测量空间的低维子空间。物理模型捕获了反射阳光、反射天窗和路径辐射对场景几何形状和大气气体和气溶胶分布的依赖性。利用子空间模型,我们开发了一种局部最大似然算法,用于自动材料识别,该算法不受照明、大气条件和场景几何形状的影响。我们展示了在不同光照和大气条件下获取的HYDICE图像中材料样本的自动识别的不变性算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant recognition in hyperspectral images
The spectral radiance measured for a material by an airborne hyperspectral sensor depends strongly on. The illumination environment and the atmospheric conditions. This dependence has limited the success of material identification algorithms that rely exclusively on the information contained in hyperspectral image data. In this paper we use a comprehensive physical model to show that the set of observed 0.4-2.5 /spl mu/m spectral radiance vectors for a material lies in a lour-dimensional subspace of the hyperspectral measurement space. The physical model captures the dependence of reflected sunlight, reflected skylight, and path radiance terms on the scene geometry and on the distribution of atmospheric gases and aerosols over a wide range of conditions. Using the subspace model, we develop a local maximum likelihood algorithm for automated material identification that is invariant to illumination, atmospheric conditions, and the scene geometry. We demonstrate the invariant algorithm for the automated identification of material samples in HYDICE imagery acquired under different illumination and atmospheric conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信