{"title":"多功能TLC NAND闪存控制,可减少85%的读干扰错误,并将云数据中心的读热、读冷数据的读周期延长6.7倍","authors":"A. Kobayashi, Tsukasa Tokutomi, K. Takeuchi","doi":"10.1109/VLSIC.2016.7573505","DOIUrl":null,"url":null,"abstract":"Versatile Triple-Level-Cell (TLC) NAND flash memory control with Read Hot/Cold Migration, Read Voltage Control and Edge Word Line Protection is proposed for data center application SSDs. Measured errors decrease by 85% and measured acceptable read cycles increase by 6.7-times.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"27 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Versatile TLC NAND flash memory control to reduce read disturb errors by 85% and extend read cycles by 6.7-times of Read-Hot and Cold data for cloud data centers\",\"authors\":\"A. Kobayashi, Tsukasa Tokutomi, K. Takeuchi\",\"doi\":\"10.1109/VLSIC.2016.7573505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Versatile Triple-Level-Cell (TLC) NAND flash memory control with Read Hot/Cold Migration, Read Voltage Control and Edge Word Line Protection is proposed for data center application SSDs. Measured errors decrease by 85% and measured acceptable read cycles increase by 6.7-times.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"27 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Versatile TLC NAND flash memory control to reduce read disturb errors by 85% and extend read cycles by 6.7-times of Read-Hot and Cold data for cloud data centers
Versatile Triple-Level-Cell (TLC) NAND flash memory control with Read Hot/Cold Migration, Read Voltage Control and Edge Word Line Protection is proposed for data center application SSDs. Measured errors decrease by 85% and measured acceptable read cycles increase by 6.7-times.