Владимир Васильевич Дубровский, В. Н. Адериха, Владимир Анатольевич Шаповалов, С. С. Песецкий
{"title":"短玻璃纤维和热膨胀石墨混合作用","authors":"Владимир Васильевич Дубровский, В. Н. Адериха, Владимир Анатольевич Шаповалов, С. С. Песецкий","doi":"10.29235/1561-8323-2018-62-1-120-128","DOIUrl":null,"url":null,"abstract":"The effect of short glass fibers (GFs) and thermally expanded graphite (TEG), added to polyethyleneterephtalate (PET), on mechanical, including dynamical mechanical, and rheological properties, as well as the structural features of the produced composites is studied. Compounding with the PET melt is realized by reactive extrusion using a co-rotating twin screw extruder-reactor with L / D = 40. Analyzed composites contained from 15 to 60 wt. % of GFs, and the TEG concentration was 0.5 and 3.0 wt. It is found that hybrid filling of PET results in a synergetic increase of the tensile modulus of the composites reaching the values more than 22 GPa, as well as that of the dynamic shear modulus in a wide temperature range. Adding TEG into PET/GF composites increases the degree of binder crystallinity. An effect of an anomalous decrease in the intrinsic viscosity of PET solutions and an increase in the melt flow index of the melt composites observed at higher GF concentrations is attributed to a deeper degradation of polymer.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"27 1","pages":"120-128"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ВЛИЯНИЕ ГИБРИДНОГО НАПОЛНЕНИЯ КОРОТКИМ СТЕКЛОВОЛОКНОМ И ТЕРМОРАСШИРЕННЫМ ГРАФИТОМ НА СТРУКТУРУ И СВОЙСТВА ПОЛИЭТИЛЕНТЕРЕФТАЛАТА\",\"authors\":\"Владимир Васильевич Дубровский, В. Н. Адериха, Владимир Анатольевич Шаповалов, С. С. Песецкий\",\"doi\":\"10.29235/1561-8323-2018-62-1-120-128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of short glass fibers (GFs) and thermally expanded graphite (TEG), added to polyethyleneterephtalate (PET), on mechanical, including dynamical mechanical, and rheological properties, as well as the structural features of the produced composites is studied. Compounding with the PET melt is realized by reactive extrusion using a co-rotating twin screw extruder-reactor with L / D = 40. Analyzed composites contained from 15 to 60 wt. % of GFs, and the TEG concentration was 0.5 and 3.0 wt. It is found that hybrid filling of PET results in a synergetic increase of the tensile modulus of the composites reaching the values more than 22 GPa, as well as that of the dynamic shear modulus in a wide temperature range. Adding TEG into PET/GF composites increases the degree of binder crystallinity. An effect of an anomalous decrease in the intrinsic viscosity of PET solutions and an increase in the melt flow index of the melt composites observed at higher GF concentrations is attributed to a deeper degradation of polymer.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"27 1\",\"pages\":\"120-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2018-62-1-120-128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2018-62-1-120-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ВЛИЯНИЕ ГИБРИДНОГО НАПОЛНЕНИЯ КОРОТКИМ СТЕКЛОВОЛОКНОМ И ТЕРМОРАСШИРЕННЫМ ГРАФИТОМ НА СТРУКТУРУ И СВОЙСТВА ПОЛИЭТИЛЕНТЕРЕФТАЛАТА
The effect of short glass fibers (GFs) and thermally expanded graphite (TEG), added to polyethyleneterephtalate (PET), on mechanical, including dynamical mechanical, and rheological properties, as well as the structural features of the produced composites is studied. Compounding with the PET melt is realized by reactive extrusion using a co-rotating twin screw extruder-reactor with L / D = 40. Analyzed composites contained from 15 to 60 wt. % of GFs, and the TEG concentration was 0.5 and 3.0 wt. It is found that hybrid filling of PET results in a synergetic increase of the tensile modulus of the composites reaching the values more than 22 GPa, as well as that of the dynamic shear modulus in a wide temperature range. Adding TEG into PET/GF composites increases the degree of binder crystallinity. An effect of an anomalous decrease in the intrinsic viscosity of PET solutions and an increase in the melt flow index of the melt composites observed at higher GF concentrations is attributed to a deeper degradation of polymer.