Choquet积分模型中不可加性指标符号的鲁棒性

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Paul Alain Kaldjob Kaldjob, Brice Mayag, Denis Bouyssou
{"title":"Choquet积分模型中不可加性指标符号的鲁棒性","authors":"Paul Alain Kaldjob Kaldjob, Brice Mayag, Denis Bouyssou","doi":"10.1142/s0218488523500265","DOIUrl":null,"url":null,"abstract":"In the context of Multiple Criteria Decision Making, this paper studies the robustness of the sign of nonadditivity index for subset of criteria in a Choquet integral model. In the case where the set of alternatives is discrete, the use of the nonadditivity index proposed in the literature often leads to interpretations which are not always robust. Indeed, the sign of this nonadditivity index can depend on the arbitrary choice of a numerical representation in the set of all numerical representations compatible with the ordinal preferential information given by the Decision Maker. We characterize the ordinal preferential information for which the problem appears. We also propose a linear program allowing to test the non robustness of the sign of nonadditivity index for subset of criteria.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"65 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Robustness of the Sign of Nonadditivity Index in a Choquet Integral Model\",\"authors\":\"Paul Alain Kaldjob Kaldjob, Brice Mayag, Denis Bouyssou\",\"doi\":\"10.1142/s0218488523500265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of Multiple Criteria Decision Making, this paper studies the robustness of the sign of nonadditivity index for subset of criteria in a Choquet integral model. In the case where the set of alternatives is discrete, the use of the nonadditivity index proposed in the literature often leads to interpretations which are not always robust. Indeed, the sign of this nonadditivity index can depend on the arbitrary choice of a numerical representation in the set of all numerical representations compatible with the ordinal preferential information given by the Decision Maker. We characterize the ordinal preferential information for which the problem appears. We also propose a linear program allowing to test the non robustness of the sign of nonadditivity index for subset of criteria.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218488523500265\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218488523500265","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在多准则决策的背景下,研究了Choquet积分模型中准则子集非可加性指标符号的鲁棒性。在选择集是离散的情况下,使用文献中提出的非可加性指标通常会导致并不总是鲁棒的解释。事实上,该非可加性指标的符号可以依赖于在与决策者给出的有序优先信息相容的所有数值表示集合中任意选择一个数值表示。我们对出现问题的有序优先信息进行表征。我们还提出了一个线性程序,用于检验准则子集的非可加性指标符号的非鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Robustness of the Sign of Nonadditivity Index in a Choquet Integral Model
In the context of Multiple Criteria Decision Making, this paper studies the robustness of the sign of nonadditivity index for subset of criteria in a Choquet integral model. In the case where the set of alternatives is discrete, the use of the nonadditivity index proposed in the literature often leads to interpretations which are not always robust. Indeed, the sign of this nonadditivity index can depend on the arbitrary choice of a numerical representation in the set of all numerical representations compatible with the ordinal preferential information given by the Decision Maker. We characterize the ordinal preferential information for which the problem appears. We also propose a linear program allowing to test the non robustness of the sign of nonadditivity index for subset of criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信