聚合物熔体蒙特卡罗模拟中的平移扩散:质心位移与积分速度自相关函数

R. Ozisik , P. Doruker , W.L. Mattice , E.D. von Meerwall
{"title":"聚合物熔体蒙特卡罗模拟中的平移扩散:质心位移与积分速度自相关函数","authors":"R. Ozisik ,&nbsp;P. Doruker ,&nbsp;W.L. Mattice ,&nbsp;E.D. von Meerwall","doi":"10.1016/S1089-3156(00)00008-8","DOIUrl":null,"url":null,"abstract":"<div><p>Translational diffusion has been simulated in monodisperse melts of four linear alkanes, C<sub>2<em>x</em></sub>H<sub>4<em>x</em>+2</sub>, <em>x</em>=6,30,50,158, and two cyclic alkanes, C<sub>2<em>x</em></sub>H<sub>4<em>x</em></sub>, <em>x</em>=30,50, at 473<!--> <!-->K. The alkanes are expressed in a coarse-grained representation using <em>x</em><span><span> beads on a high coordination lattice, one bead for every two carbon atoms. Short-range intramolecular interactions are controlled by an adaptation of the rotational isomeric state model for unperturbed polyethylene<span>, and the long-range interactions are controlled by a step-wise three-shell potential energy function derived from a continuous Lennard-Jones potential energy function. Acceptance of trial moves, each of which changes the coordinates of a single bead only, is governed by the Metropolis rule. Translational </span></span>diffusion coefficients, </span><em>D</em><span>, are estimated from the mean square displacement of the center of mass and the integral of the velocity autocorrelation function. Both approaches yield the same value for </span><em>D</em><span>, which demonstrates that the velocity has been defined in a reasonable manner in the Monte Carlo simulation. A method is proposed for the estimation of </span><em>D</em> when the trajectory is not quite long enough to have achieved the behavior characteristic of the limit as time approaches infinity.</p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 5","pages":"Pages 411-418"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(00)00008-8","citationCount":"4","resultStr":"{\"title\":\"Translational diffusion in Monte Carlo simulations of polymer melts: center of mass displacement vs. integrated velocity autocorrelation function\",\"authors\":\"R. Ozisik ,&nbsp;P. Doruker ,&nbsp;W.L. Mattice ,&nbsp;E.D. von Meerwall\",\"doi\":\"10.1016/S1089-3156(00)00008-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Translational diffusion has been simulated in monodisperse melts of four linear alkanes, C<sub>2<em>x</em></sub>H<sub>4<em>x</em>+2</sub>, <em>x</em>=6,30,50,158, and two cyclic alkanes, C<sub>2<em>x</em></sub>H<sub>4<em>x</em></sub>, <em>x</em>=30,50, at 473<!--> <!-->K. The alkanes are expressed in a coarse-grained representation using <em>x</em><span><span> beads on a high coordination lattice, one bead for every two carbon atoms. Short-range intramolecular interactions are controlled by an adaptation of the rotational isomeric state model for unperturbed polyethylene<span>, and the long-range interactions are controlled by a step-wise three-shell potential energy function derived from a continuous Lennard-Jones potential energy function. Acceptance of trial moves, each of which changes the coordinates of a single bead only, is governed by the Metropolis rule. Translational </span></span>diffusion coefficients, </span><em>D</em><span>, are estimated from the mean square displacement of the center of mass and the integral of the velocity autocorrelation function. Both approaches yield the same value for </span><em>D</em><span>, which demonstrates that the velocity has been defined in a reasonable manner in the Monte Carlo simulation. A method is proposed for the estimation of </span><em>D</em> when the trajectory is not quite long enough to have achieved the behavior characteristic of the limit as time approaches infinity.</p></div>\",\"PeriodicalId\":100309,\"journal\":{\"name\":\"Computational and Theoretical Polymer Science\",\"volume\":\"10 5\",\"pages\":\"Pages 411-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1089-3156(00)00008-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089315600000088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315600000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在473 K下,模拟了四种线性烷烃(C2xH4x+2, x=6,30,50,158)和两种环状烷烃(C2xH4x, x=30,50)的单分散熔体的平动扩散。烷烃以粗粒度表示,在高配位晶格上使用x珠表示,每两个碳原子对应一个珠。分子内的短程相互作用通过对未扰动聚乙烯的旋转同分异构体状态模型的适应来控制,而远程相互作用则由由连续Lennard-Jones势能函数导出的阶梯三壳层势能函数来控制。每次尝试移动只改变单个头部的坐标,接受尝试移动受Metropolis规则的约束。平动扩散系数D由质心的均方位移和速度自相关函数的积分估计。两种方法得到的D值相同,这表明在蒙特卡罗模拟中以合理的方式定义了速度。提出了一种当轨迹不够长,不足以达到时间趋近于无穷极限的行为特征时D的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translational diffusion in Monte Carlo simulations of polymer melts: center of mass displacement vs. integrated velocity autocorrelation function

Translational diffusion has been simulated in monodisperse melts of four linear alkanes, C2xH4x+2, x=6,30,50,158, and two cyclic alkanes, C2xH4x, x=30,50, at 473 K. The alkanes are expressed in a coarse-grained representation using x beads on a high coordination lattice, one bead for every two carbon atoms. Short-range intramolecular interactions are controlled by an adaptation of the rotational isomeric state model for unperturbed polyethylene, and the long-range interactions are controlled by a step-wise three-shell potential energy function derived from a continuous Lennard-Jones potential energy function. Acceptance of trial moves, each of which changes the coordinates of a single bead only, is governed by the Metropolis rule. Translational diffusion coefficients, D, are estimated from the mean square displacement of the center of mass and the integral of the velocity autocorrelation function. Both approaches yield the same value for D, which demonstrates that the velocity has been defined in a reasonable manner in the Monte Carlo simulation. A method is proposed for the estimation of D when the trajectory is not quite long enough to have achieved the behavior characteristic of the limit as time approaches infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信