平面定理的几何推广Gale-Nikaidô

IF 0.3 Q4 MATHEMATICS
E. Balreira
{"title":"平面定理的几何推广Gale-Nikaidô","authors":"E. Balreira","doi":"10.3844/JMSSP.2018.151.155","DOIUrl":null,"url":null,"abstract":"The Gale-Nikaido Theorem establishes global injectivity of maps defined over rectangular regions provided the Jacobian matrix is a P-matrix. We provide a purely geometric generalization of this result in the plane by showing that if the image of each edge of the rectangular domain is realized as a graph of a function over the appropriate axis, then the map is injective. We also show that the hypothesis that the Jacobian matrix is a P-matrix is simply one way to analytically check this geometric condition.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"18 1","pages":"151-155"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Geometric Generalization of the Planar Gale-Nikaidô Theorem\",\"authors\":\"E. Balreira\",\"doi\":\"10.3844/JMSSP.2018.151.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gale-Nikaido Theorem establishes global injectivity of maps defined over rectangular regions provided the Jacobian matrix is a P-matrix. We provide a purely geometric generalization of this result in the plane by showing that if the image of each edge of the rectangular domain is realized as a graph of a function over the appropriate axis, then the map is injective. We also show that the hypothesis that the Jacobian matrix is a P-matrix is simply one way to analytically check this geometric condition.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"18 1\",\"pages\":\"151-155\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2018.151.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.151.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假定雅可比矩阵为p矩阵,则Gale-Nikaido定理建立了矩形区域上映射的全局注入性。我们在平面上对这个结果进行了纯粹的几何推广,表明如果矩形域的每条边的图像被实现为一个函数在适当轴上的图形,那么这个映射是内射的。我们也证明了雅可比矩阵是p矩阵的假设是一种简单的方法来解析地检验这个几何条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometric Generalization of the Planar Gale-Nikaidô Theorem
The Gale-Nikaido Theorem establishes global injectivity of maps defined over rectangular regions provided the Jacobian matrix is a P-matrix. We provide a purely geometric generalization of this result in the plane by showing that if the image of each edge of the rectangular domain is realized as a graph of a function over the appropriate axis, then the map is injective. We also show that the hypothesis that the Jacobian matrix is a P-matrix is simply one way to analytically check this geometric condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信