吉尔伯特-斯坦纳问题的一个凸方法

IF 1.2 4区 数学 Q1 MATHEMATICS
M. Bonafini, 'Edouard Oudet
{"title":"吉尔伯特-斯坦纳问题的一个凸方法","authors":"M. Bonafini, 'Edouard Oudet","doi":"10.4171/ifb/436","DOIUrl":null,"url":null,"abstract":"We describe a convex relaxation for the Gilbert-Steiner problem both in $R^d$ and on manifolds, extending the framework proposed in [9], and we discuss its sharpness by means of calibration type arguments. The minimization of the resulting problem is then tackled numerically and we present results for an extensive set of examples. In particular we are able to address the Steiner tree problem on surfaces.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"64 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A convex approach to the Gilbert–Steiner problem\",\"authors\":\"M. Bonafini, 'Edouard Oudet\",\"doi\":\"10.4171/ifb/436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a convex relaxation for the Gilbert-Steiner problem both in $R^d$ and on manifolds, extending the framework proposed in [9], and we discuss its sharpness by means of calibration type arguments. The minimization of the resulting problem is then tackled numerically and we present results for an extensive set of examples. In particular we are able to address the Steiner tree problem on surfaces.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/436\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们在R^d$和流形上描述了Gilbert-Steiner问题的凸松弛,扩展了[9]中提出的框架,并通过校准型参数讨论了其锐度。最小化所产生的问题,然后处理数值,我们提出的结果为一组广泛的例子。特别是我们能够解决曲面上的斯坦纳树问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convex approach to the Gilbert–Steiner problem
We describe a convex relaxation for the Gilbert-Steiner problem both in $R^d$ and on manifolds, extending the framework proposed in [9], and we discuss its sharpness by means of calibration type arguments. The minimization of the resulting problem is then tackled numerically and we present results for an extensive set of examples. In particular we are able to address the Steiner tree problem on surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信