SUDAF:共享用户自定义聚合函数

Chao Zhang, F. Toumani, B. Doreau
{"title":"SUDAF:共享用户自定义聚合函数","authors":"Chao Zhang, F. Toumani, B. Doreau","doi":"10.1109/ICDE48307.2020.00161","DOIUrl":null,"url":null,"abstract":"We present SUDAF (Sharing User-Defined Aggregate Functions), a declarative framework that allows users to formulate UDAFs as mathematical expressions and use them in SQL statements. SUDAF rewrites partial aggregates of UDAFs using built-in aggregate functions and supports efficient dynamic caching and reusing of partial aggregates. Our evaluation shows that using SUDAF on top of Spark SQL can lead from one to two orders of magnitude improvement in query execution times compared to the original Spark SQL.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"6 1","pages":"1750-1553"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SUDAF: Sharing User-Defined Aggregate Functions\",\"authors\":\"Chao Zhang, F. Toumani, B. Doreau\",\"doi\":\"10.1109/ICDE48307.2020.00161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present SUDAF (Sharing User-Defined Aggregate Functions), a declarative framework that allows users to formulate UDAFs as mathematical expressions and use them in SQL statements. SUDAF rewrites partial aggregates of UDAFs using built-in aggregate functions and supports efficient dynamic caching and reusing of partial aggregates. Our evaluation shows that using SUDAF on top of Spark SQL can lead from one to two orders of magnitude improvement in query execution times compared to the original Spark SQL.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"6 1\",\"pages\":\"1750-1553\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了SUDAF(共享用户定义聚合函数),这是一个声明性框架,允许用户将udaf表述为数学表达式,并在SQL语句中使用它们。SUDAF使用内置的聚合函数重写udaf的部分聚合,并支持高效的动态缓存和部分聚合的重用。我们的评估表明,与原始Spark SQL相比,在Spark SQL之上使用SUDAF可以使查询执行时间提高一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUDAF: Sharing User-Defined Aggregate Functions
We present SUDAF (Sharing User-Defined Aggregate Functions), a declarative framework that allows users to formulate UDAFs as mathematical expressions and use them in SQL statements. SUDAF rewrites partial aggregates of UDAFs using built-in aggregate functions and supports efficient dynamic caching and reusing of partial aggregates. Our evaluation shows that using SUDAF on top of Spark SQL can lead from one to two orders of magnitude improvement in query execution times compared to the original Spark SQL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信