{"title":"介子对撞机的中微子诱导辐射","authors":"N. Mokhov, A. van Ginneken","doi":"10.1109/PAC.1999.792184","DOIUrl":null,"url":null,"abstract":"Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Neutrino induced radiation at muon colliders\",\"authors\":\"N. Mokhov, A. van Ginneken\",\"doi\":\"10.1109/PAC.1999.792184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.792184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.