介子对撞机的中微子诱导辐射

N. Mokhov, A. van Ginneken
{"title":"介子对撞机的中微子诱导辐射","authors":"N. Mokhov, A. van Ginneken","doi":"10.1109/PAC.1999.792184","DOIUrl":null,"url":null,"abstract":"Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Neutrino induced radiation at muon colliders\",\"authors\":\"N. Mokhov, A. van Ginneken\",\"doi\":\"10.1109/PAC.1999.792184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.792184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

强烈的高度准直的中微子束是由高能介子对撞机的介子衰变产生的,即使在距离对撞机环很远的地方也会产生严重的辐射问题。新开发的加权中微子相互作用发生器允许使用MARS代码对中微子(及其后代)的相互作用进行详细的蒙特卡罗模拟。用中微子束(100 MeV-10 TeV)照射人体组织等效幻体(TEP)时,计算了剂量分布。得到了裸TEP、嵌入多种屏蔽材料的TEP和位于屏蔽后不同距离的TEP的结果。计算了0.5、1、2、3和4 TeV介子对撞机与对撞机环(最多60公里)之间可达到建议年剂量限值的距离。研究了通过光束摆动来缓解这一问题的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutrino induced radiation at muon colliders
Intense highly collimated neutrino beams are created from muon decays at high-energy muon colliders causing significant radiation problems even at very large distances from the collider ring. A newly developed weighted neutrino interaction generator permits detailed Monte Carlo simulations of the interactions of neutrinos (and of their progeny) to be performed using the MARS code. Dose distributions in a human tissue-equivalent phantom (TEP) are calculated when irradiated with neutrino beams (100 MeV-10 TeV). Results are obtained for a bare TEP, one embedded in several shielding materials and for a TEP located at various distances behind a shield. The distance from the collider ring (up to 60 km) at which recommended annual dose limits can be met is calculated for 0.5, 1, 2, 3 and 4 TeV muon colliders. The possibility to mitigate the problem via beam wobbling is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信