正半定情况下SOR方法的收敛速度

IF 0.9 Q3 MATHEMATICS, APPLIED
Achiya Dax
{"title":"正半定情况下SOR方法的收敛速度","authors":"Achiya Dax","doi":"10.1155/2022/6143444","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form <i>G</i><i>x</i> = <i>b</i>, where <i>G</i> is a real symmetric positive semidefinite <i>n</i> × <i>n</i> matrix. The bounds are given in terms of the condition number of <i>G</i>, which is the ratio <i>κ</i> = <i>α</i>/<i>β</i>, where <i>α</i> is the largest eigenvalue of <i>G</i> and <i>β</i> is the smallest nonzero eigenvalue of <i>G</i>. Let <i>H</i> denote the related iteration matrix. Then, since <i>G</i> has a zero eigenvalue, the spectral radius of <i>H</i> equals 1, and the rate of convergence is determined by the size of <i>η</i>, the largest eigenvalue of <i>H</i> whose modulus differs from 1. The bound has the form |<i>η</i>|<sup>2</sup> ≤ 1 − 1/(<i>κ</i><i>c</i>), where <i>c</i> = 2 + log<sub>2</sub><i>n</i>. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/6143444","citationCount":"0","resultStr":"{\"title\":\"The Rate of Convergence of the SOR Method in the Positive Semidefinite Case\",\"authors\":\"Achiya Dax\",\"doi\":\"10.1155/2022/6143444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form <i>G</i><i>x</i> = <i>b</i>, where <i>G</i> is a real symmetric positive semidefinite <i>n</i> × <i>n</i> matrix. The bounds are given in terms of the condition number of <i>G</i>, which is the ratio <i>κ</i> = <i>α</i>/<i>β</i>, where <i>α</i> is the largest eigenvalue of <i>G</i> and <i>β</i> is the smallest nonzero eigenvalue of <i>G</i>. Let <i>H</i> denote the related iteration matrix. Then, since <i>G</i> has a zero eigenvalue, the spectral radius of <i>H</i> equals 1, and the rate of convergence is determined by the size of <i>η</i>, the largest eigenvalue of <i>H</i> whose modulus differs from 1. The bound has the form |<i>η</i>|<sup>2</sup> ≤ 1 − 1/(<i>κ</i><i>c</i>), where <i>c</i> = 2 + log<sub>2</sub><i>n</i>. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/6143444\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2022/6143444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/6143444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解形式为Gx = b的线性方程组的SOR方法收敛速度的上界,其中G是一个实对称正半定n × n矩阵。用G的条件数,即比值κ = α/β给出边界,其中α是G的最大特征值,β是G的最小非零特征值,设H表示相关的迭代矩阵。然后,由于G的特征值为零,H的谱半径等于1,收敛速度由η的大小决定,η是H的最大特征值,其模数不等于1。边界的形式为|η|2≤1−1/(κc),其中c = 2 + log2n。这个界限的主要结果是,小的条件数迫使快速收敛,而大的条件数允许缓慢收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rate of Convergence of the SOR Method in the Positive Semidefinite Case

In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form Gx = b, where G is a real symmetric positive semidefinite n × n matrix. The bounds are given in terms of the condition number of G, which is the ratio κ = α/β, where α is the largest eigenvalue of G and β is the smallest nonzero eigenvalue of G. Let H denote the related iteration matrix. Then, since G has a zero eigenvalue, the spectral radius of H equals 1, and the rate of convergence is determined by the size of η, the largest eigenvalue of H whose modulus differs from 1. The bound has the form |η|2 ≤ 1 − 1/(κc), where c = 2 + log2n. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信