波利尼亚克:新猜想

Leichsenring Ig
{"title":"波利尼亚克:新猜想","authors":"Leichsenring Ig","doi":"10.4172/2168-9679.1000415","DOIUrl":null,"url":null,"abstract":"The intent of this essay is not to try to prove that the twin primes are infinite. We would just like to add another way so that others interested in Number Theory can help in elucidating this mystery. The conjecture of Polignac states that each natural pair is equal to the difference of two primes; but this conjecture, it seems, has not yet been proven. However, we note that there is a certain correlation of that thesis with the foundations of our previous study, as proposed in \"Goldbach New Conjecture\", which led to this monograph on twin primes. Pair (g, h) k p q g 5 71 h 5 73 kg 5 12 pg 5 59 qg 5 83 kh 5 6 ph 5 67 qh 5 79 kg 5 18 pg 5 53 qg 5 89 kh 5 36 ph 5 37 qh 5 109 kg 5 30 Pg 5 41 qg 5 101 kh 5 30 ph 5 43 qh 5 103 kg 5 66 pg 5 5 qg 5 137 kh 5 66 ph 5 7 qh 5 139 Table 1: Symmetries pair of (71,73). Citation: Leichsenring IG (2018) Polignac: New Conjecture. J Appl Computat Math 7: 415. doi: 10.4172/2168-9679.1000415","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polignac: New Conjecture\",\"authors\":\"Leichsenring Ig\",\"doi\":\"10.4172/2168-9679.1000415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intent of this essay is not to try to prove that the twin primes are infinite. We would just like to add another way so that others interested in Number Theory can help in elucidating this mystery. The conjecture of Polignac states that each natural pair is equal to the difference of two primes; but this conjecture, it seems, has not yet been proven. However, we note that there is a certain correlation of that thesis with the foundations of our previous study, as proposed in \\\"Goldbach New Conjecture\\\", which led to this monograph on twin primes. Pair (g, h) k p q g 5 71 h 5 73 kg 5 12 pg 5 59 qg 5 83 kh 5 6 ph 5 67 qh 5 79 kg 5 18 pg 5 53 qg 5 89 kh 5 36 ph 5 37 qh 5 109 kg 5 30 Pg 5 41 qg 5 101 kh 5 30 ph 5 43 qh 5 103 kg 5 66 pg 5 5 qg 5 137 kh 5 66 ph 5 7 qh 5 139 Table 1: Symmetries pair of (71,73). Citation: Leichsenring IG (2018) Polignac: New Conjecture. J Appl Computat Math 7: 415. doi: 10.4172/2168-9679.1000415\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的不是试图证明孪生素数是无限的。我们只是想添加另一种方式,以便其他对数论感兴趣的人可以帮助阐明这个谜团。波利尼亚克猜想指出,每个自然对都等于两个素数之差;但这一猜想似乎尚未得到证实。然而,我们注意到,该论文与我们先前研究的基础有一定的相关性,如“哥德巴赫新猜想”中提出的,这导致了这本关于孪生素数的专著。对(g, h) k p q g 5 71 h 5 73公斤5 12 pg 5 59路上qh 5 5 83 kh 5 6 ph值5 67 79公斤5 18 pg 5 53路上5 89 kh qh 5 109公斤5 5 ph值36 5 37 101 pg 5 41路上5 kh 5 ph值30 5 43本书5 103公斤5 66 pg 5 5路上5 137 kh - 5 66 ph值5 7本书,5 139表1:对称性(71、73)。引用本文:Leichsenring IG (2018) Polignac: New Conjecture。[J]计算机数学,第7卷第4节。doi: 10.4172 / 2168 - 9679.1000415
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polignac: New Conjecture
The intent of this essay is not to try to prove that the twin primes are infinite. We would just like to add another way so that others interested in Number Theory can help in elucidating this mystery. The conjecture of Polignac states that each natural pair is equal to the difference of two primes; but this conjecture, it seems, has not yet been proven. However, we note that there is a certain correlation of that thesis with the foundations of our previous study, as proposed in "Goldbach New Conjecture", which led to this monograph on twin primes. Pair (g, h) k p q g 5 71 h 5 73 kg 5 12 pg 5 59 qg 5 83 kh 5 6 ph 5 67 qh 5 79 kg 5 18 pg 5 53 qg 5 89 kh 5 36 ph 5 37 qh 5 109 kg 5 30 Pg 5 41 qg 5 101 kh 5 30 ph 5 43 qh 5 103 kg 5 66 pg 5 5 qg 5 137 kh 5 66 ph 5 7 qh 5 139 Table 1: Symmetries pair of (71,73). Citation: Leichsenring IG (2018) Polignac: New Conjecture. J Appl Computat Math 7: 415. doi: 10.4172/2168-9679.1000415
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信