分数阶Schrödinger- Choquard方程的适定性和放大

Pub Date : 2023-06-01 DOI:10.4208/jpde.v36.n1.6
Lu Tao, Yajuan Zhao null, Yongsheng Li
{"title":"分数阶Schrödinger- Choquard方程的适定性和放大","authors":"Lu Tao, Yajuan Zhao null, Yongsheng Li","doi":"10.4208/jpde.v36.n1.6","DOIUrl":null,"url":null,"abstract":". In this paper, we study the well-posedness and blow-up solutions for the fractional Schr¨odinger equation with a Hartree-type nonlinearity together with a power-type subcritical or critical perturbations. For nonradial initial data or radial initial data, we prove the local well-posedness for the defocusing and the focusing cases with sub-critical or critical nonlinearity. We obtain the global well-posedness for the defocusing case, and for the focusing mass-subcritical case or mass-critical case with initial data small enough. We also investigate blow-up solutions for the focusing mass-critical problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness and Blow-Up for the Fractional Schrödinger- Choquard Equation\",\"authors\":\"Lu Tao, Yajuan Zhao null, Yongsheng Li\",\"doi\":\"10.4208/jpde.v36.n1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the well-posedness and blow-up solutions for the fractional Schr¨odinger equation with a Hartree-type nonlinearity together with a power-type subcritical or critical perturbations. For nonradial initial data or radial initial data, we prove the local well-posedness for the defocusing and the focusing cases with sub-critical or critical nonlinearity. We obtain the global well-posedness for the defocusing case, and for the focusing mass-subcritical case or mass-critical case with initial data small enough. We also investigate blow-up solutions for the focusing mass-critical problem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v36.n1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v36.n1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究了一类具有幂型次临界或临界扰动的hartree型非线性分数阶Schr¨odinger方程的适定性和爆破解。对于非径向初始数据或径向初始数据,我们证明了散焦和亚临界或临界非线性聚焦情况下的局部适定性。我们得到了散焦情况、聚焦质量-亚临界情况和初始数据足够小的质量-临界情况的全局适定性。我们还研究了聚焦临界质量问题的爆破解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Well-Posedness and Blow-Up for the Fractional Schrödinger- Choquard Equation
. In this paper, we study the well-posedness and blow-up solutions for the fractional Schr¨odinger equation with a Hartree-type nonlinearity together with a power-type subcritical or critical perturbations. For nonradial initial data or radial initial data, we prove the local well-posedness for the defocusing and the focusing cases with sub-critical or critical nonlinearity. We obtain the global well-posedness for the defocusing case, and for the focusing mass-subcritical case or mass-critical case with initial data small enough. We also investigate blow-up solutions for the focusing mass-critical problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信