EFRing:使用单个智能环通过电场感应实现拇指到食指的微手势交互

Taizhou Chen, Tianpei Li, Xingyu Yang, Kening Zhu
{"title":"EFRing:使用单个智能环通过电场感应实现拇指到食指的微手势交互","authors":"Taizhou Chen, Tianpei Li, Xingyu Yang, Kening Zhu","doi":"10.1145/3569478","DOIUrl":null,"url":null,"abstract":"We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of 1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"20 1","pages":"161:1-161:31"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EFRing: Enabling Thumb-to-Index-Finger Microgesture Interaction through Electric Field Sensing Using Single Smart Ring\",\"authors\":\"Taizhou Chen, Tianpei Li, Xingyu Yang, Kening Zhu\",\"doi\":\"10.1145/3569478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of 1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.\",\"PeriodicalId\":20463,\"journal\":{\"name\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"volume\":\"20 1\",\"pages\":\"161:1-161:31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了EFRing,一种食指佩戴的环形装置,用于通过电场(EF)传感方法检测拇指到食指(T2I)的微手势。基于T2I运动引起的信号变化,我们提出了两种基于机器学习的数据处理管道:一种用于识别/分类离散的T2I微手势,另一种用于跟踪连续的1D T2I运动。我们对EFRing微手势分类的实验表明,对于9个离散的T2I微手势,用户内平均准确率为89.5%,用户间平均准确率为85.2%。对于1D T2I运动的连续跟踪,我们的方法可以实现通用模型3.5%的均方误差和个性化模型2.3%的均方误差。我们的1D-Fitts定律目标选择研究表明,所提出的EFRing跟踪方法直观、准确,适合实时使用。最后,我们提出并讨论了EFRing的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EFRing: Enabling Thumb-to-Index-Finger Microgesture Interaction through Electric Field Sensing Using Single Smart Ring
We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of 1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信