d维N时钟模型的粗粒度和大N行为

IF 1.2 4区 数学 Q1 MATHEMATICS
M. Cicalese, G. Orlando, M. Ruf
{"title":"d维N时钟模型的粗粒度和大N行为","authors":"M. Cicalese, G. Orlando, M. Ruf","doi":"10.4171/ifb/456","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\\mathcal{S}_N$ of the unit circle~$\\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\\varepsilon \\to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\\mathcal{S}_N$; at a second stage, we let $N \\to +\\infty$. The final result of this two-step limit process is an anisotropic total variation of $\\mathbb{S}^1$-valued vector fields of bounded variation.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Coarse graining and large-$N$ behavior of the $d$-dimensional $N$-clock model\",\"authors\":\"M. Cicalese, G. Orlando, M. Ruf\",\"doi\":\"10.4171/ifb/456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\\\\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\\\\mathcal{S}_N$ of the unit circle~$\\\\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\\\\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\\\\varepsilon \\\\to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\\\\mathcal{S}_N$; at a second stage, we let $N \\\\to +\\\\infty$. The final result of this two-step limit process is an anisotropic total variation of $\\\\mathbb{S}^1$-valued vector fields of bounded variation.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/456\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/456","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了$N$ -时钟模型的渐近行为,这是一个在$d$维立方$\varepsilon$ -晶格上的最近邻铁磁自旋模型,其中自旋场被约束为在由$N$等距点组成的单位圆$\mathbb{S}^{1}$的离散化$\mathcal{S}_N$中取值。我们的$\Gamma$ -收敛分析包括两个步骤:首先,我们固定$N$并让晶格间距$\varepsilon \to 0$,得到在分段恒定自旋场上定义的连续统中的界面能量,其值为$\mathcal{S}_N$;在第二阶段,我们让$N \to +\infty$。这两步极限过程的最终结果是有界变化的$\mathbb{S}^1$值向量场的各向异性总变分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse graining and large-$N$ behavior of the $d$-dimensional $N$-clock model
We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\mathcal{S}_N$ of the unit circle~$\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\varepsilon \to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\mathcal{S}_N$; at a second stage, we let $N \to +\infty$. The final result of this two-step limit process is an anisotropic total variation of $\mathbb{S}^1$-valued vector fields of bounded variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信