动态距离预言器的力量:斯坦纳树的有效动态算法

Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, P. Sankowski, Anna Zych
{"title":"动态距离预言器的力量:斯坦纳树的有效动态算法","authors":"Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, P. Sankowski, Anna Zych","doi":"10.1145/2746539.2746615","DOIUrl":null,"url":null,"abstract":"In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an n-vertex graph G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set S ⊆ V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)-approximate Steiner tree of a general graph in ~O(√n log D) time per terminal addition or removal. Here, strecz denotes the stretch of the metric induced by G. For planar graphs we achieve the same running time and the approximation ratio of (2+ε). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree\",\"authors\":\"Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, P. Sankowski, Anna Zych\",\"doi\":\"10.1145/2746539.2746615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an n-vertex graph G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set S ⊆ V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)-approximate Steiner tree of a general graph in ~O(√n log D) time per terminal addition or removal. Here, strecz denotes the stretch of the metric induced by G. For planar graphs we achieve the same running time and the approximation ratio of (2+ε). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文研究了动态末端集上的斯坦纳树问题。我们考虑这样一个模型:给定一个具有正实边权的n顶点图G=(V,E,w),我们的目标是维护一棵树,该树很好地近似于生成终端集S≥V的最小斯坦纳树,该树随时间变化。应用于终端集的更改要么是终端添加(增量场景),要么是终端删除(递减场景),或者两者都有(完全动态场景)。我们的任务是双重的。我们希望支持次线性的0 (n)时间内的更新,并使算法的近似因子尽可能小。我们证明了我们可以在~O(√n log D)的时间内维持一个一般图的(6+ε)-近似Steiner树。这里,strecz表示由g引起的度量的拉伸。对于平面图,我们实现了相同的运行时间和近似比(2+ε)。此外,我们展示了增量和递减场景下更快的算法。最后,我们证明,如果我们允许更高的近似比,甚至更有效的算法是可能的。特别地,我们给出了一个平面图形的多对数时间(4+ε)近似算法。我们算法的主要构建块之一是顶点标记图的动态距离预言器,这是独立的兴趣。我们还改进并使用了在线算法来解决斯坦纳树问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree
In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an n-vertex graph G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set S ⊆ V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)-approximate Steiner tree of a general graph in ~O(√n log D) time per terminal addition or removal. Here, strecz denotes the stretch of the metric induced by G. For planar graphs we achieve the same running time and the approximation ratio of (2+ε). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信