基于伪逆的反卷积识别生理系统

D. Westwick, R. Kearney
{"title":"基于伪逆的反卷积识别生理系统","authors":"D. Westwick, R. Kearney","doi":"10.1109/IEMBS.1995.579749","DOIUrl":null,"url":null,"abstract":"The identification of nonparametric impulse response functions (IRFs) from noisy, finite-length data records is analyzed using the techniques of matrix perturbation analysis. Based on these findings, we develop a new method for IRF estimation which is expected to be more robust than existing techniques, particularly when the input is non-white. An application to the identification of human ankle dynamics is presented which demonstrates the superiority of this new method over classical techniques.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"23 1","pages":"1405-1406 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of physiological systems using pseudo-inverse based deconvolution\",\"authors\":\"D. Westwick, R. Kearney\",\"doi\":\"10.1109/IEMBS.1995.579749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of nonparametric impulse response functions (IRFs) from noisy, finite-length data records is analyzed using the techniques of matrix perturbation analysis. Based on these findings, we develop a new method for IRF estimation which is expected to be more robust than existing techniques, particularly when the input is non-white. An application to the identification of human ankle dynamics is presented which demonstrates the superiority of this new method over classical techniques.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"23 1\",\"pages\":\"1405-1406 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.579749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.579749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用矩阵摄动分析技术,分析了有限长噪声数据记录中非参数脉冲响应函数的辨识问题。基于这些发现,我们开发了一种新的IRF估计方法,该方法预计比现有技术更稳健,特别是当输入是非白色时。在人体踝关节动力学识别中的应用表明了该方法相对于传统方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of physiological systems using pseudo-inverse based deconvolution
The identification of nonparametric impulse response functions (IRFs) from noisy, finite-length data records is analyzed using the techniques of matrix perturbation analysis. Based on these findings, we develop a new method for IRF estimation which is expected to be more robust than existing techniques, particularly when the input is non-white. An application to the identification of human ankle dynamics is presented which demonstrates the superiority of this new method over classical techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信