{"title":"田口优化tigr2电火花加工中的多重性能特征","authors":"S. Akıncıoğlu","doi":"10.22190/fume201230028a","DOIUrl":null,"url":null,"abstract":"Electrical discharge machining (EDM) provides many advantages for the shaping of metallic materials. It also provides better surface quality for Ti alloys used in the defense industry. In this study, experiments were carried out with different EDM parameters using the Titanium (Gr2) alloy. A number of novel industrial processes have been developed as a result of advances in technology. For a product to be developed, these novel approaches must be utilized to determine optimum parameters. The Taguchi method was applied in the experiments with EDM. The impact the test parameters had on the performance characteristics of tool wear rate, material removal rate, depth, and surface roughness were analyzed by the variance analysis (ANOVA). Quadratic regression analyses were carried out to reveal the correlation between the experimental results and the predicted values. According to the ANOVA results for material removal rate (MRR), tool wear rate (TWR), depth, and surface roughness, the most effective factor was amperage, at 99.66%, 99.56%, 87.95%, and 81.12%, respectively. The best value for average surface roughness was determined to be 3.29 µm obtained at 120 μs time-on, 8 A, and 40 μs time-off.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"54 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"TAGUCHI OPTIMIZATION OF MULTIPLE PERFORMANCE CHARACTERISTICS IN THE ELECTRICAL DISCHARGE MACHINING OF THE TIGR2\",\"authors\":\"S. Akıncıoğlu\",\"doi\":\"10.22190/fume201230028a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical discharge machining (EDM) provides many advantages for the shaping of metallic materials. It also provides better surface quality for Ti alloys used in the defense industry. In this study, experiments were carried out with different EDM parameters using the Titanium (Gr2) alloy. A number of novel industrial processes have been developed as a result of advances in technology. For a product to be developed, these novel approaches must be utilized to determine optimum parameters. The Taguchi method was applied in the experiments with EDM. The impact the test parameters had on the performance characteristics of tool wear rate, material removal rate, depth, and surface roughness were analyzed by the variance analysis (ANOVA). Quadratic regression analyses were carried out to reveal the correlation between the experimental results and the predicted values. According to the ANOVA results for material removal rate (MRR), tool wear rate (TWR), depth, and surface roughness, the most effective factor was amperage, at 99.66%, 99.56%, 87.95%, and 81.12%, respectively. The best value for average surface roughness was determined to be 3.29 µm obtained at 120 μs time-on, 8 A, and 40 μs time-off.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22190/fume201230028a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume201230028a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
TAGUCHI OPTIMIZATION OF MULTIPLE PERFORMANCE CHARACTERISTICS IN THE ELECTRICAL DISCHARGE MACHINING OF THE TIGR2
Electrical discharge machining (EDM) provides many advantages for the shaping of metallic materials. It also provides better surface quality for Ti alloys used in the defense industry. In this study, experiments were carried out with different EDM parameters using the Titanium (Gr2) alloy. A number of novel industrial processes have been developed as a result of advances in technology. For a product to be developed, these novel approaches must be utilized to determine optimum parameters. The Taguchi method was applied in the experiments with EDM. The impact the test parameters had on the performance characteristics of tool wear rate, material removal rate, depth, and surface roughness were analyzed by the variance analysis (ANOVA). Quadratic regression analyses were carried out to reveal the correlation between the experimental results and the predicted values. According to the ANOVA results for material removal rate (MRR), tool wear rate (TWR), depth, and surface roughness, the most effective factor was amperage, at 99.66%, 99.56%, 87.95%, and 81.12%, respectively. The best value for average surface roughness was determined to be 3.29 µm obtained at 120 μs time-on, 8 A, and 40 μs time-off.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.