长期依赖条件下近积分回归量的非参数回归

IF 2.9 4区 经济学 Q1 ECONOMICS
Zongwu Cai, Bingyi Jing, Xinbing Kong, Zhi Liu
{"title":"长期依赖条件下近积分回归量的非参数回归","authors":"Zongwu Cai,&nbsp;Bingyi Jing,&nbsp;Xinbing Kong,&nbsp;Zhi Liu","doi":"10.1111/ectj.12082","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the nonparametric estimation of a regression function with nonstationary (integrated or nearly integrated) covariates and the error series of the regressor process following a fractional integrated autoregressive moving average model. A local linear estimation method is developed to estimate the unknown regression function. The asymptotic results of the resulting estimator at both interior points and boundaries are obtained. The asymptotic distribution is mixed normal, associated with the local time of an Ornstein–Uhlenbeck fractional Brownian motion. Furthermore, we study the Nadaraya–Watson estimator and we examine its asymptotic results. As a result, it shares exactly the same asymptotic results as those for the local linear estimator for the zero energy situation. However, for the non-zero energy case, the local linear estimator is superior to the Nadaraya–Watson estimator in terms of optimal convergence rate. We also present a comparison of our results with the conventional results for stationary covariates. Finally, we conduct a Monte Carlo simulation to illustrate the finite sample performance of the proposed estimator.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"20 1","pages":"118-138"},"PeriodicalIF":2.9000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12082","citationCount":"1","resultStr":"{\"title\":\"Nonparametric regression with nearly integrated regressors under long-run dependence\",\"authors\":\"Zongwu Cai,&nbsp;Bingyi Jing,&nbsp;Xinbing Kong,&nbsp;Zhi Liu\",\"doi\":\"10.1111/ectj.12082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We study the nonparametric estimation of a regression function with nonstationary (integrated or nearly integrated) covariates and the error series of the regressor process following a fractional integrated autoregressive moving average model. A local linear estimation method is developed to estimate the unknown regression function. The asymptotic results of the resulting estimator at both interior points and boundaries are obtained. The asymptotic distribution is mixed normal, associated with the local time of an Ornstein–Uhlenbeck fractional Brownian motion. Furthermore, we study the Nadaraya–Watson estimator and we examine its asymptotic results. As a result, it shares exactly the same asymptotic results as those for the local linear estimator for the zero energy situation. However, for the non-zero energy case, the local linear estimator is superior to the Nadaraya–Watson estimator in terms of optimal convergence rate. We also present a comparison of our results with the conventional results for stationary covariates. Finally, we conduct a Monte Carlo simulation to illustrate the finite sample performance of the proposed estimator.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"20 1\",\"pages\":\"118-138\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12082\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12082\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12082","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了非平稳(积分或近积分)协变量回归函数的非参数估计,以及分数积分自回归移动平均模型下回归过程的误差序列。提出了一种局部线性估计方法来估计未知回归函数。得到了所得到的估计量在内点和边界处的渐近结果。渐近分布是混合正态分布,与Ornstein-Uhlenbeck分数阶布朗运动的局部时间有关。进一步,我们研究了Nadaraya-Watson估计量,并检验了它的渐近结果。因此,它与零能量情况下的局部线性估计具有完全相同的渐近结果。然而,对于非零能量情况,局部线性估计量在最优收敛速率方面优于Nadaraya-Watson估计量。我们还将我们的结果与平稳协变量的常规结果进行了比较。最后,我们进行了蒙特卡罗模拟,以说明所提出的估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric regression with nearly integrated regressors under long-run dependence

We study the nonparametric estimation of a regression function with nonstationary (integrated or nearly integrated) covariates and the error series of the regressor process following a fractional integrated autoregressive moving average model. A local linear estimation method is developed to estimate the unknown regression function. The asymptotic results of the resulting estimator at both interior points and boundaries are obtained. The asymptotic distribution is mixed normal, associated with the local time of an Ornstein–Uhlenbeck fractional Brownian motion. Furthermore, we study the Nadaraya–Watson estimator and we examine its asymptotic results. As a result, it shares exactly the same asymptotic results as those for the local linear estimator for the zero energy situation. However, for the non-zero energy case, the local linear estimator is superior to the Nadaraya–Watson estimator in terms of optimal convergence rate. We also present a comparison of our results with the conventional results for stationary covariates. Finally, we conduct a Monte Carlo simulation to illustrate the finite sample performance of the proposed estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信