与多上下文无关的单词问题组

IF 0.1 Q4 MATHEMATICS
Tara Brough
{"title":"与多上下文无关的单词问题组","authors":"Tara Brough","doi":"10.1515/gcc-2014-0002","DOIUrl":null,"url":null,"abstract":"Abstract. We consider the class of groups whose word problem is poly-context-free; that is, an intersection of finitely many context-free languages. We show that any group which is virtually a finitely generated subgroup of a direct product of free groups has poly-context-free word problem, and conjecture that the converse also holds. We prove our conjecture for several classes of soluble groups, including metabelian groups and torsion-free soluble groups, and present progress towards resolving the conjecture for soluble groups in general. Some of the techniques introduced for proving languages not to be poly-context-free may be of independent interest.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"36 1","pages":"29 - 9"},"PeriodicalIF":0.1000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Groups with poly-context-free word problem\",\"authors\":\"Tara Brough\",\"doi\":\"10.1515/gcc-2014-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We consider the class of groups whose word problem is poly-context-free; that is, an intersection of finitely many context-free languages. We show that any group which is virtually a finitely generated subgroup of a direct product of free groups has poly-context-free word problem, and conjecture that the converse also holds. We prove our conjecture for several classes of soluble groups, including metabelian groups and torsion-free soluble groups, and present progress towards resolving the conjecture for soluble groups in general. Some of the techniques introduced for proving languages not to be poly-context-free may be of independent interest.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"36 1\",\"pages\":\"29 - 9\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

摘要

摘要我们考虑一类词问题是多上下文无关的群;也就是说,它是有限多个与上下文无关的语言的交集。我们证明了任何实际上是自由群的直接积的有限生成子群的群都存在多上下文无关字问题,并推测反之也成立。我们证明了若干类可溶群的猜想,包括亚系群和无扭转可溶群,并给出了一般可溶群猜想的解决进展。为证明语言不是多上下文无关而引入的一些技术可能是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups with poly-context-free word problem
Abstract. We consider the class of groups whose word problem is poly-context-free; that is, an intersection of finitely many context-free languages. We show that any group which is virtually a finitely generated subgroup of a direct product of free groups has poly-context-free word problem, and conjecture that the converse also holds. We prove our conjecture for several classes of soluble groups, including metabelian groups and torsion-free soluble groups, and present progress towards resolving the conjecture for soluble groups in general. Some of the techniques introduced for proving languages not to be poly-context-free may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信