Guang-Jun Chen , Jiang-Ke Yang , Xiao-Bo Peng , Jing-Ren He
{"title":"菊糖酶的高水平分泌表达及其在菊糖制备果葡糖浆中的应用","authors":"Guang-Jun Chen , Jiang-Ke Yang , Xiao-Bo Peng , Jing-Ren He","doi":"10.1016/j.molcatb.2017.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Inulin is a type of fructose polymer that is commonly present in plants as a storage carbohydrate. Enzymatic hydrolysis of inulin via exo-inulinase to produce fructose is an efficient, green and state-of-the-art technique. To achieve the high-level secretory expression of inulinase and to realize enzymatic preparation of fructose syrup from inulin, an <em>Aspergillus</em> exo-inulinase gene <em>inu</em> was codon-optimized and co-expressed with the endoplasmic reticulum secretion protein in <em>Pichia</em> cells. After inducible expression in a 500-L pilot scale bioreactor, the inulinase activity of the recombinant strains reached 10,480<!--> <!-->U/mL of cultivation broth. Next, according to the determined enzymatic characteristics of inulinase INU, we optimized the parameters for inulinase to hydrolyse inulin. Under the optimal condition of the enzyme/inulin ratio of 5000<!--> <!-->U/g, 15% substrate and an incubation temperature of 50<!--> <!-->°C for 4<!--> <!-->h, the hydrolysis ratio of inulin reached 100%. The hydrolysis products of inulin contain two components, 95% fructose, and 5% glucose. This study has fulfilled the scaled-up production of inulinase and facilitated its industrial application for enzymatic preparation of fructose from inulin.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S543-S551"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.09.001","citationCount":"7","resultStr":"{\"title\":\"High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin\",\"authors\":\"Guang-Jun Chen , Jiang-Ke Yang , Xiao-Bo Peng , Jing-Ren He\",\"doi\":\"10.1016/j.molcatb.2017.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inulin is a type of fructose polymer that is commonly present in plants as a storage carbohydrate. Enzymatic hydrolysis of inulin via exo-inulinase to produce fructose is an efficient, green and state-of-the-art technique. To achieve the high-level secretory expression of inulinase and to realize enzymatic preparation of fructose syrup from inulin, an <em>Aspergillus</em> exo-inulinase gene <em>inu</em> was codon-optimized and co-expressed with the endoplasmic reticulum secretion protein in <em>Pichia</em> cells. After inducible expression in a 500-L pilot scale bioreactor, the inulinase activity of the recombinant strains reached 10,480<!--> <!-->U/mL of cultivation broth. Next, according to the determined enzymatic characteristics of inulinase INU, we optimized the parameters for inulinase to hydrolyse inulin. Under the optimal condition of the enzyme/inulin ratio of 5000<!--> <!-->U/g, 15% substrate and an incubation temperature of 50<!--> <!-->°C for 4<!--> <!-->h, the hydrolysis ratio of inulin reached 100%. The hydrolysis products of inulin contain two components, 95% fructose, and 5% glucose. This study has fulfilled the scaled-up production of inulinase and facilitated its industrial application for enzymatic preparation of fructose from inulin.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages S543-S551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2017.09.001\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117717300528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117717300528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin
Inulin is a type of fructose polymer that is commonly present in plants as a storage carbohydrate. Enzymatic hydrolysis of inulin via exo-inulinase to produce fructose is an efficient, green and state-of-the-art technique. To achieve the high-level secretory expression of inulinase and to realize enzymatic preparation of fructose syrup from inulin, an Aspergillus exo-inulinase gene inu was codon-optimized and co-expressed with the endoplasmic reticulum secretion protein in Pichia cells. After inducible expression in a 500-L pilot scale bioreactor, the inulinase activity of the recombinant strains reached 10,480 U/mL of cultivation broth. Next, according to the determined enzymatic characteristics of inulinase INU, we optimized the parameters for inulinase to hydrolyse inulin. Under the optimal condition of the enzyme/inulin ratio of 5000 U/g, 15% substrate and an incubation temperature of 50 °C for 4 h, the hydrolysis ratio of inulin reached 100%. The hydrolysis products of inulin contain two components, 95% fructose, and 5% glucose. This study has fulfilled the scaled-up production of inulinase and facilitated its industrial application for enzymatic preparation of fructose from inulin.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.