Lei Zheng, N. Keppler, Huajun Zhang, Peter Behrens, B. Roth
{"title":"用于二氧化碳传感的金属-有机框架涂层平面聚合物光波导","authors":"Lei Zheng, N. Keppler, Huajun Zhang, Peter Behrens, B. Roth","doi":"10.1002/admt.202200395","DOIUrl":null,"url":null,"abstract":"An easily fabricated gas sensor based on planar polymer optical waveguides with an integrated zeolite imidazole framework‐8 (ZIF‐8) thin film is presented for carbon dioxide detection and sensing. The planar optical waveguides are made of polymethylmethacrylate and fabricated by hot embossing, which makes it flexible and cost‐efficient. Thin ZIF‐8 films are uniformly grown on the waveguides surface through a simple solution method, which is crucial for the envisioned production of metal organic framework‐based sensing devices on a large scale. Experimental results show that the produced optical elements exhibit a sensitivity of ≈2.5 μW/5 vol% toward carbon dioxide (CO2) with very rapid response time (≈6 s) and excellent reversibility of adsorption and desorption of the gas molecules. The demonstrated planar polymer sensing devices provide the potential to develop flexible on‐chip gas sensors in an inexpensive and reproducible way.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Planar Polymer Optical Waveguide with Metal‐Organic Framework Coating for Carbon Dioxide Sensing\",\"authors\":\"Lei Zheng, N. Keppler, Huajun Zhang, Peter Behrens, B. Roth\",\"doi\":\"10.1002/admt.202200395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An easily fabricated gas sensor based on planar polymer optical waveguides with an integrated zeolite imidazole framework‐8 (ZIF‐8) thin film is presented for carbon dioxide detection and sensing. The planar optical waveguides are made of polymethylmethacrylate and fabricated by hot embossing, which makes it flexible and cost‐efficient. Thin ZIF‐8 films are uniformly grown on the waveguides surface through a simple solution method, which is crucial for the envisioned production of metal organic framework‐based sensing devices on a large scale. Experimental results show that the produced optical elements exhibit a sensitivity of ≈2.5 μW/5 vol% toward carbon dioxide (CO2) with very rapid response time (≈6 s) and excellent reversibility of adsorption and desorption of the gas molecules. The demonstrated planar polymer sensing devices provide the potential to develop flexible on‐chip gas sensors in an inexpensive and reproducible way.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Planar Polymer Optical Waveguide with Metal‐Organic Framework Coating for Carbon Dioxide Sensing
An easily fabricated gas sensor based on planar polymer optical waveguides with an integrated zeolite imidazole framework‐8 (ZIF‐8) thin film is presented for carbon dioxide detection and sensing. The planar optical waveguides are made of polymethylmethacrylate and fabricated by hot embossing, which makes it flexible and cost‐efficient. Thin ZIF‐8 films are uniformly grown on the waveguides surface through a simple solution method, which is crucial for the envisioned production of metal organic framework‐based sensing devices on a large scale. Experimental results show that the produced optical elements exhibit a sensitivity of ≈2.5 μW/5 vol% toward carbon dioxide (CO2) with very rapid response time (≈6 s) and excellent reversibility of adsorption and desorption of the gas molecules. The demonstrated planar polymer sensing devices provide the potential to develop flexible on‐chip gas sensors in an inexpensive and reproducible way.