基于前馈神经网络(FFNN)的甚低频哨声瞬态识别

D. K. Sondhiya, S. K. Kasde, Dishansh Raj Upwar, A. Gwal
{"title":"基于前馈神经网络(FFNN)的甚低频哨声瞬态识别","authors":"D. K. Sondhiya, S. K. Kasde, Dishansh Raj Upwar, A. Gwal","doi":"10.9790/4861-0904012329","DOIUrl":null,"url":null,"abstract":"The automatic identification of VLF whistler transients is an important practical goal for ionospheric and magnetospheric science because they give useful information regarding propagating medium particularly of the plasmasphere. We have developed a neural network based system to identify four types of whistlers (i.e diffuse, dispersive, multipath and spicky) recorded by DEMETER (Detection of electromagnetic emission form earthquake region) satellite. Wavelet transform is applied to extract the characteristics features of whistlers which are used to train the Feed Forward Neural Network (FFNN). The data required to train the network were collected from two year (2008-2010) observations of DEMETER satellite. The results show that the proposed FFNN can accurately identify the whistler transients.","PeriodicalId":14502,"journal":{"name":"IOSR Journal of Applied Physics","volume":"18 1","pages":"23-29"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Very Low Frequency (VLF) Whistlers transients using Feed Forward Neural Network (FFNN)\",\"authors\":\"D. K. Sondhiya, S. K. Kasde, Dishansh Raj Upwar, A. Gwal\",\"doi\":\"10.9790/4861-0904012329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic identification of VLF whistler transients is an important practical goal for ionospheric and magnetospheric science because they give useful information regarding propagating medium particularly of the plasmasphere. We have developed a neural network based system to identify four types of whistlers (i.e diffuse, dispersive, multipath and spicky) recorded by DEMETER (Detection of electromagnetic emission form earthquake region) satellite. Wavelet transform is applied to extract the characteristics features of whistlers which are used to train the Feed Forward Neural Network (FFNN). The data required to train the network were collected from two year (2008-2010) observations of DEMETER satellite. The results show that the proposed FFNN can accurately identify the whistler transients.\",\"PeriodicalId\":14502,\"journal\":{\"name\":\"IOSR Journal of Applied Physics\",\"volume\":\"18 1\",\"pages\":\"23-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOSR Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/4861-0904012329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/4861-0904012329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

VLF哨声瞬态的自动识别是电离层和磁层科学的一个重要的实际目标,因为它们提供了关于传播介质特别是等离子层的有用信息。我们开发了一种基于神经网络的系统来识别由DEMETER(探测震区电磁发射)卫星记录的四种类型的哨声(即弥漫性、色散性、多径性和黏性)。利用小波变换提取哨声的特征特征,并将其用于训练前馈神经网络。训练网络所需的数据来自DEMETER卫星两年(2008-2010年)的观测数据。结果表明,所提出的FFNN能准确识别哨声瞬态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Very Low Frequency (VLF) Whistlers transients using Feed Forward Neural Network (FFNN)
The automatic identification of VLF whistler transients is an important practical goal for ionospheric and magnetospheric science because they give useful information regarding propagating medium particularly of the plasmasphere. We have developed a neural network based system to identify four types of whistlers (i.e diffuse, dispersive, multipath and spicky) recorded by DEMETER (Detection of electromagnetic emission form earthquake region) satellite. Wavelet transform is applied to extract the characteristics features of whistlers which are used to train the Feed Forward Neural Network (FFNN). The data required to train the network were collected from two year (2008-2010) observations of DEMETER satellite. The results show that the proposed FFNN can accurately identify the whistler transients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信