{"title":"带障碍和Neumann问题的拟线性抛物型偏微分方程的概率方法","authors":"Lishun Xiao, Shengjun Fan, D. Tian","doi":"10.1051/ps/2019023","DOIUrl":null,"url":null,"abstract":"In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems\",\"authors\":\"Lishun Xiao, Shengjun Fan, D. Tian\",\"doi\":\"10.1051/ps/2019023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2019023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2019023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems
In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.