带障碍和Neumann问题的拟线性抛物型偏微分方程的概率方法

Pub Date : 2020-01-01 DOI:10.1051/ps/2019023
Lishun Xiao, Shengjun Fan, D. Tian
{"title":"带障碍和Neumann问题的拟线性抛物型偏微分方程的概率方法","authors":"Lishun Xiao, Shengjun Fan, D. Tian","doi":"10.1051/ps/2019023","DOIUrl":null,"url":null,"abstract":"In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems\",\"authors\":\"Lishun Xiao, Shengjun Fan, D. Tian\",\"doi\":\"10.1051/ps/2019023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2019023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2019023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文用概率方法证明了拟线性抛物型偏微分方程结合Neumann边界条件和代数方程的障碍问题存在唯一的黏度解。带反射的完全耦合正反向随机微分方程的自适应解的存在唯一性是一个重要的问题。与已有的研究结果相比,我们的结果中偏微分方程解的空间变量存在于一个没有凸性约束的区域,偏微分方程的二阶系数依赖于解的梯度,且系数的要求条件较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems
In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信