C. Kumar, Radhika Shivhare, A. Abraham, Jinhai Li, Annapurna Jonnalagadda
{"title":"用实用的方法来理解希伯比细胞组装","authors":"C. Kumar, Radhika Shivhare, A. Abraham, Jinhai Li, Annapurna Jonnalagadda","doi":"10.4018/ijcini.20210401.oa6","DOIUrl":null,"url":null,"abstract":"Formed at the cerebral cortex, neuron cell assemblies are regarded as basic units in cortical representation. Proposed by Hebb, these cell assemblies are regarded as the distributed neural representation of relevant objects, concepts or constellations. Each cell assembly contains a group of neurons having strong mutual excitatory connections. During a stimulus, these cells get activated. This activation either performs a given action or represent a given percept or concept in brain. This theory is in the strongest connection of the problem of concept forming in the brain. The challenge is to model coordinated activity among neurons in brain mathematically. The need of modelling it mathematically enables this paper to give clear view of functionality of Hebbian cell assembly. Therefore this paper proposes a pragmatic approach to Hebbian cell assemblies using mathematical model grounded in lattice based formalism that utilizes Galois connections. During this proposal, the authors also show the connections of the proposal to cognitive model of memory in particularly long-term memory (LTM).","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"8 1","pages":"73-95"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Pragmatic Approach to Understand Hebbian Cell Assembly\",\"authors\":\"C. Kumar, Radhika Shivhare, A. Abraham, Jinhai Li, Annapurna Jonnalagadda\",\"doi\":\"10.4018/ijcini.20210401.oa6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formed at the cerebral cortex, neuron cell assemblies are regarded as basic units in cortical representation. Proposed by Hebb, these cell assemblies are regarded as the distributed neural representation of relevant objects, concepts or constellations. Each cell assembly contains a group of neurons having strong mutual excitatory connections. During a stimulus, these cells get activated. This activation either performs a given action or represent a given percept or concept in brain. This theory is in the strongest connection of the problem of concept forming in the brain. The challenge is to model coordinated activity among neurons in brain mathematically. The need of modelling it mathematically enables this paper to give clear view of functionality of Hebbian cell assembly. Therefore this paper proposes a pragmatic approach to Hebbian cell assemblies using mathematical model grounded in lattice based formalism that utilizes Galois connections. During this proposal, the authors also show the connections of the proposal to cognitive model of memory in particularly long-term memory (LTM).\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"8 1\",\"pages\":\"73-95\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20210401.oa6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Pragmatic Approach to Understand Hebbian Cell Assembly
Formed at the cerebral cortex, neuron cell assemblies are regarded as basic units in cortical representation. Proposed by Hebb, these cell assemblies are regarded as the distributed neural representation of relevant objects, concepts or constellations. Each cell assembly contains a group of neurons having strong mutual excitatory connections. During a stimulus, these cells get activated. This activation either performs a given action or represent a given percept or concept in brain. This theory is in the strongest connection of the problem of concept forming in the brain. The challenge is to model coordinated activity among neurons in brain mathematically. The need of modelling it mathematically enables this paper to give clear view of functionality of Hebbian cell assembly. Therefore this paper proposes a pragmatic approach to Hebbian cell assemblies using mathematical model grounded in lattice based formalism that utilizes Galois connections. During this proposal, the authors also show the connections of the proposal to cognitive model of memory in particularly long-term memory (LTM).
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.