传染病在任意网络中传播的离散时间随机模型的最优控制

Fabrizio Angaroni, C. Damiani, Giulia Ramunni, M. Antoniotti
{"title":"传染病在任意网络中传播的离散时间随机模型的最优控制","authors":"Fabrizio Angaroni, C. Damiani, Giulia Ramunni, M. Antoniotti","doi":"10.23919/ANNSIM52504.2021.9552097","DOIUrl":null,"url":null,"abstract":"Preparedness for any future epidemic has become an urgent need. Epidemic modeling and simulation are at the core of the healthcare efforts that are underway to assert some level of control over the spreading and the treatment of a pathogen. In this milieu, this paper describes a stochastic dynamic model to simulate the spreading of infectious diseases. We present the equations that describe the system dynamics, their adjoint systems, and their optimal control characterization by means of the discrete-system extension of Pontryagin's Maximum Principle. This derivation is presented in two different cases: a vaccination policy and a combined vaccination-treatment approach. We show the behavior of such models via numerical simulations using the forward-backward sweep procedure. While somewhat speculative, this paper provides insights into how to evaluate different theoretical optimal healthcare policies during an epidemic, either at the individual or metapopulation resolution level.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"26 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control of a Discrete Time Stochastic Model of an Epidemic Spreading in Arbitrary Networks\",\"authors\":\"Fabrizio Angaroni, C. Damiani, Giulia Ramunni, M. Antoniotti\",\"doi\":\"10.23919/ANNSIM52504.2021.9552097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preparedness for any future epidemic has become an urgent need. Epidemic modeling and simulation are at the core of the healthcare efforts that are underway to assert some level of control over the spreading and the treatment of a pathogen. In this milieu, this paper describes a stochastic dynamic model to simulate the spreading of infectious diseases. We present the equations that describe the system dynamics, their adjoint systems, and their optimal control characterization by means of the discrete-system extension of Pontryagin's Maximum Principle. This derivation is presented in two different cases: a vaccination policy and a combined vaccination-treatment approach. We show the behavior of such models via numerical simulations using the forward-backward sweep procedure. While somewhat speculative, this paper provides insights into how to evaluate different theoretical optimal healthcare policies during an epidemic, either at the individual or metapopulation resolution level.\",\"PeriodicalId\":6782,\"journal\":{\"name\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"volume\":\"26 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ANNSIM52504.2021.9552097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为未来任何流行病做好准备已成为一项迫切需要。流行病建模和模拟是正在进行的医疗保健工作的核心,旨在对病原体的传播和治疗进行一定程度的控制。在这种情况下,本文描述了一个模拟传染病传播的随机动态模型。利用庞特里亚金极大值原理的离散系统推广,给出了描述系统动力学、伴随系统及其最优控制特性的方程。这种推导在两种不同的情况下提出:疫苗接种政策和联合疫苗接种治疗方法。我们通过使用向前向后扫描过程的数值模拟来展示这种模型的行为。虽然有些推测,但本文提供了如何在流行病期间评估不同的理论最佳医疗保健政策的见解,无论是在个人还是在人口解决水平上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control of a Discrete Time Stochastic Model of an Epidemic Spreading in Arbitrary Networks
Preparedness for any future epidemic has become an urgent need. Epidemic modeling and simulation are at the core of the healthcare efforts that are underway to assert some level of control over the spreading and the treatment of a pathogen. In this milieu, this paper describes a stochastic dynamic model to simulate the spreading of infectious diseases. We present the equations that describe the system dynamics, their adjoint systems, and their optimal control characterization by means of the discrete-system extension of Pontryagin's Maximum Principle. This derivation is presented in two different cases: a vaccination policy and a combined vaccination-treatment approach. We show the behavior of such models via numerical simulations using the forward-backward sweep procedure. While somewhat speculative, this paper provides insights into how to evaluate different theoretical optimal healthcare policies during an epidemic, either at the individual or metapopulation resolution level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信