{"title":"温度和光照对日本牵牛花萌发特性的影响:萌发基本温度的测定","authors":"Hosein Sarani, E. Izadi, A. Ghanbari, A. Rahemi","doi":"10.29252/yujs.6.1.115","DOIUrl":null,"url":null,"abstract":"Extended Abstract Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light. Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m - 2 -sec -1 ) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate. Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments. Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed. temperature, Intersected-lines model, Lack of light requirement, The dent-like model","PeriodicalId":14578,"journal":{"name":"Iranian Journal of Seed Research","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Temperature and Light on Germination Characteristics of Japanese Morning Glory (Ipomoea nil): Determination of Cardinal Temperatures of Germination\",\"authors\":\"Hosein Sarani, E. Izadi, A. Ghanbari, A. Rahemi\",\"doi\":\"10.29252/yujs.6.1.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light. Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m - 2 -sec -1 ) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate. Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments. Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed. temperature, Intersected-lines model, Lack of light requirement, The dent-like model\",\"PeriodicalId\":14578,\"journal\":{\"name\":\"Iranian Journal of Seed Research\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Seed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/yujs.6.1.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Seed Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/yujs.6.1.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Temperature and Light on Germination Characteristics of Japanese Morning Glory (Ipomoea nil): Determination of Cardinal Temperatures of Germination
Extended Abstract Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light. Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m - 2 -sec -1 ) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate. Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments. Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed. temperature, Intersected-lines model, Lack of light requirement, The dent-like model