{"title":"翅片几何形状对翅片管式换热器性能影响的参数CFD分析","authors":"Shobhana Singh, K. Sørensen, T. Condra","doi":"10.1109/EUROSIM.2016.126","DOIUrl":null,"url":null,"abstract":"— Heat transfer and pressure loss characteristics of a fin and tube heat exchanger are numerically investigated based on parametric fin geometry. The cross-flow type heat exchanger with circular tubes and rectangular fin profile is selected as a reference design. The fin geometry is varied using a design aspect ratio as a variable parameter in a range of 0.1-1.0 to predict the impact on overall performance of the heat exchanger. In this paper, geometric profiles with a constant thickness of fin base are studied. Three-dimensional, steady state CFD model is developed using commercially available Multiphysics software COMSOL v5.2. The numerical results are obtained for Reynolds number in a range from 5000 to 13000 and verified with the experimentally developed correlations. Dimensionless performance parameters such as Nusselt number, Euler number, efficiency index, and area-goodness factor are determined. The best performed geometric fin profile based on the higher heat transfer and lower pressure loss is predicted. The study provides insights into the impact of fin geometry on the heat transfer performance which help escalate the understanding of heat exchanger designing and manufacturing at a minimum cost.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parametric CFD Analysis to study the Influence of Fin Geometry on the Performance of a Fin and Tube Heat Exchanger\",\"authors\":\"Shobhana Singh, K. Sørensen, T. Condra\",\"doi\":\"10.1109/EUROSIM.2016.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Heat transfer and pressure loss characteristics of a fin and tube heat exchanger are numerically investigated based on parametric fin geometry. The cross-flow type heat exchanger with circular tubes and rectangular fin profile is selected as a reference design. The fin geometry is varied using a design aspect ratio as a variable parameter in a range of 0.1-1.0 to predict the impact on overall performance of the heat exchanger. In this paper, geometric profiles with a constant thickness of fin base are studied. Three-dimensional, steady state CFD model is developed using commercially available Multiphysics software COMSOL v5.2. The numerical results are obtained for Reynolds number in a range from 5000 to 13000 and verified with the experimentally developed correlations. Dimensionless performance parameters such as Nusselt number, Euler number, efficiency index, and area-goodness factor are determined. The best performed geometric fin profile based on the higher heat transfer and lower pressure loss is predicted. The study provides insights into the impact of fin geometry on the heat transfer performance which help escalate the understanding of heat exchanger designing and manufacturing at a minimum cost.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIM.2016.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/EUROSIM.2016.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametric CFD Analysis to study the Influence of Fin Geometry on the Performance of a Fin and Tube Heat Exchanger
— Heat transfer and pressure loss characteristics of a fin and tube heat exchanger are numerically investigated based on parametric fin geometry. The cross-flow type heat exchanger with circular tubes and rectangular fin profile is selected as a reference design. The fin geometry is varied using a design aspect ratio as a variable parameter in a range of 0.1-1.0 to predict the impact on overall performance of the heat exchanger. In this paper, geometric profiles with a constant thickness of fin base are studied. Three-dimensional, steady state CFD model is developed using commercially available Multiphysics software COMSOL v5.2. The numerical results are obtained for Reynolds number in a range from 5000 to 13000 and verified with the experimentally developed correlations. Dimensionless performance parameters such as Nusselt number, Euler number, efficiency index, and area-goodness factor are determined. The best performed geometric fin profile based on the higher heat transfer and lower pressure loss is predicted. The study provides insights into the impact of fin geometry on the heat transfer performance which help escalate the understanding of heat exchanger designing and manufacturing at a minimum cost.