S. Bhushan, O. Elfajri, W. Jock, D. K. Walters, J. Lai, Y. Hassan, R. Jackson, A. Obabko, E. Merzari
{"title":"RANS、LES和混合RANS/LES模型对低pr湍流预测的评估","authors":"S. Bhushan, O. Elfajri, W. Jock, D. K. Walters, J. Lai, Y. Hassan, R. Jackson, A. Obabko, E. Merzari","doi":"10.1115/FEDSM2018-83307","DOIUrl":null,"url":null,"abstract":"The predictive capability of RANS, hybrid RANS/LES and LES turbulence models for momentum and thermal energy transfer in wall bounded low-Pr turbulent flows is investigated. Plane channel flow simulations are performed for Reτ = 150 and 640 for Pr = 0.025 and 0.71 with and without buoyancy effects, including both forced and mixed force/natural convection conditions, using the open source spectral element flow solver Nek5000. The prediction of one-point velocity and temperature statistics from the simulations are compared against available DNS results. Results are analyzed to understand the effect of flow conditions on turbulent thermal transport, and assess the relative strengths and weaknesses of the different modeling methods.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessment of RANS, LES, and Hybrid RANS/LES Models for the Prediction of Low-Pr Turbulent Flows\",\"authors\":\"S. Bhushan, O. Elfajri, W. Jock, D. K. Walters, J. Lai, Y. Hassan, R. Jackson, A. Obabko, E. Merzari\",\"doi\":\"10.1115/FEDSM2018-83307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The predictive capability of RANS, hybrid RANS/LES and LES turbulence models for momentum and thermal energy transfer in wall bounded low-Pr turbulent flows is investigated. Plane channel flow simulations are performed for Reτ = 150 and 640 for Pr = 0.025 and 0.71 with and without buoyancy effects, including both forced and mixed force/natural convection conditions, using the open source spectral element flow solver Nek5000. The prediction of one-point velocity and temperature statistics from the simulations are compared against available DNS results. Results are analyzed to understand the effect of flow conditions on turbulent thermal transport, and assess the relative strengths and weaknesses of the different modeling methods.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of RANS, LES, and Hybrid RANS/LES Models for the Prediction of Low-Pr Turbulent Flows
The predictive capability of RANS, hybrid RANS/LES and LES turbulence models for momentum and thermal energy transfer in wall bounded low-Pr turbulent flows is investigated. Plane channel flow simulations are performed for Reτ = 150 and 640 for Pr = 0.025 and 0.71 with and without buoyancy effects, including both forced and mixed force/natural convection conditions, using the open source spectral element flow solver Nek5000. The prediction of one-point velocity and temperature statistics from the simulations are compared against available DNS results. Results are analyzed to understand the effect of flow conditions on turbulent thermal transport, and assess the relative strengths and weaknesses of the different modeling methods.