M. Kalaiyarasi, P. Vijayaraghavan, S.R.F. Raj, S. Vincent
{"title":"蜡样芽孢杆菌KA3生产蛋白酶和纤维素酶的统计方法","authors":"M. Kalaiyarasi, P. Vijayaraghavan, S.R.F. Raj, S. Vincent","doi":"10.11648/J.BE.20170104.11","DOIUrl":null,"url":null,"abstract":"A cheap agro-industrial waste was used as the substrate for the production of protease and cellulase from Bacillus cereus KA3. The process parameters were optimized by a two level full factorial design and response surface methodology. Two level full factorial designs revealed that the factors namely, pH, peptone and NaH2PO4 were significantly influenced on the production of protease and cellulase. These three significant factors were selected for central composite design and response surface methodology. The maximum protease and cellulase production was 3127 U/g, and 482 U/g, respectively, after statistical approach, which showed over fourfold increase in enzyme production than unoptimized medium.","PeriodicalId":8944,"journal":{"name":"Bioprocess Engineering","volume":"abs/1510.07735 1","pages":"93"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Approach for the Production of Protease and Cellulase from Bacillus cereus KA3\",\"authors\":\"M. Kalaiyarasi, P. Vijayaraghavan, S.R.F. Raj, S. Vincent\",\"doi\":\"10.11648/J.BE.20170104.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cheap agro-industrial waste was used as the substrate for the production of protease and cellulase from Bacillus cereus KA3. The process parameters were optimized by a two level full factorial design and response surface methodology. Two level full factorial designs revealed that the factors namely, pH, peptone and NaH2PO4 were significantly influenced on the production of protease and cellulase. These three significant factors were selected for central composite design and response surface methodology. The maximum protease and cellulase production was 3127 U/g, and 482 U/g, respectively, after statistical approach, which showed over fourfold increase in enzyme production than unoptimized medium.\",\"PeriodicalId\":8944,\"journal\":{\"name\":\"Bioprocess Engineering\",\"volume\":\"abs/1510.07735 1\",\"pages\":\"93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.BE.20170104.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.BE.20170104.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Approach for the Production of Protease and Cellulase from Bacillus cereus KA3
A cheap agro-industrial waste was used as the substrate for the production of protease and cellulase from Bacillus cereus KA3. The process parameters were optimized by a two level full factorial design and response surface methodology. Two level full factorial designs revealed that the factors namely, pH, peptone and NaH2PO4 were significantly influenced on the production of protease and cellulase. These three significant factors were selected for central composite design and response surface methodology. The maximum protease and cellulase production was 3127 U/g, and 482 U/g, respectively, after statistical approach, which showed over fourfold increase in enzyme production than unoptimized medium.