基于鲁棒误差函数和粒子群优化- bp神经网络的图像恢复

Yinxue Zhang, Zhenhong Jia, Haijun Jiang, Zijian Liu
{"title":"基于鲁棒误差函数和粒子群优化- bp神经网络的图像恢复","authors":"Yinxue Zhang, Zhenhong Jia, Haijun Jiang, Zijian Liu","doi":"10.1109/ICNC.2008.140","DOIUrl":null,"url":null,"abstract":"A new method for image restoration based on robust error function and BP neural network optimized with particle swarm optimization (PSO) is proposed in this paper. In this technique, BP neural network uses a robust error function as its error function, and then the neural network optimized with PSO. This method can minimize an evaluation function established based on an observed image. The proposed method takes into consideration point spread function (PSF) blurring as well as an additive random noise and obtains restoration image with more preserved image details. Experimental results demonstrate that the proposed new method can have a very high quality both in the visual qualitative performance and the quantitative performance than the traditional algorithms.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"30 1","pages":"640-644"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Image Restoration Based on Robust Error Function and Particle Swarm Optimization-BP Neural Network\",\"authors\":\"Yinxue Zhang, Zhenhong Jia, Haijun Jiang, Zijian Liu\",\"doi\":\"10.1109/ICNC.2008.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for image restoration based on robust error function and BP neural network optimized with particle swarm optimization (PSO) is proposed in this paper. In this technique, BP neural network uses a robust error function as its error function, and then the neural network optimized with PSO. This method can minimize an evaluation function established based on an observed image. The proposed method takes into consideration point spread function (PSF) blurring as well as an additive random noise and obtains restoration image with more preserved image details. Experimental results demonstrate that the proposed new method can have a very high quality both in the visual qualitative performance and the quantitative performance than the traditional algorithms.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"30 1\",\"pages\":\"640-644\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于鲁棒误差函数和粒子群优化BP神经网络的图像恢复新方法。在该技术中,BP神经网络采用鲁棒误差函数作为误差函数,然后利用粒子群算法对神经网络进行优化。该方法可以最小化基于观测图像建立的评价函数。该方法考虑了点扩散函数(PSF)模糊和加性随机噪声,得到了保留图像细节更多的恢复图像。实验结果表明,与传统算法相比,该方法在视觉定性性能和定量性能上都具有很高的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Restoration Based on Robust Error Function and Particle Swarm Optimization-BP Neural Network
A new method for image restoration based on robust error function and BP neural network optimized with particle swarm optimization (PSO) is proposed in this paper. In this technique, BP neural network uses a robust error function as its error function, and then the neural network optimized with PSO. This method can minimize an evaluation function established based on an observed image. The proposed method takes into consideration point spread function (PSF) blurring as well as an additive random noise and obtains restoration image with more preserved image details. Experimental results demonstrate that the proposed new method can have a very high quality both in the visual qualitative performance and the quantitative performance than the traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信