{"title":"绿色荧光蛋白双链RNA作为非靶阴性对照在玻璃翅雀RNA干扰检测中的作用","authors":"Julien Rougeot, Yidong Wang, E. Verhulst","doi":"10.1017/exp.2020.67","DOIUrl":null,"url":null,"abstract":"Abstract RNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when using Green Fluorescent Protein (GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect of GFP RNAi (GFP-i) in Nasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response to GFP-i. A subset of these genes appears involved in microtubule and sperm functions. In silico analysis identified 17 potential off-targets, of which only one was differentially expressed after GFP-i. We suggest the primary cause for differential expression after GFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of using green fluorescent protein double-stranded RNA as non-target negative control in Nasonia vitripennis RNA interference assays\",\"authors\":\"Julien Rougeot, Yidong Wang, E. Verhulst\",\"doi\":\"10.1017/exp.2020.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract RNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when using Green Fluorescent Protein (GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect of GFP RNAi (GFP-i) in Nasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response to GFP-i. A subset of these genes appears involved in microtubule and sperm functions. In silico analysis identified 17 potential off-targets, of which only one was differentially expressed after GFP-i. We suggest the primary cause for differential expression after GFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.\",\"PeriodicalId\":12269,\"journal\":{\"name\":\"Experimental Results\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/exp.2020.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2020.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of using green fluorescent protein double-stranded RNA as non-target negative control in Nasonia vitripennis RNA interference assays
Abstract RNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when using Green Fluorescent Protein (GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect of GFP RNAi (GFP-i) in Nasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response to GFP-i. A subset of these genes appears involved in microtubule and sperm functions. In silico analysis identified 17 potential off-targets, of which only one was differentially expressed after GFP-i. We suggest the primary cause for differential expression after GFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.