自由群的子群的格:补和秩

IF 0.1 Q4 MATHEMATICS
Jordi Delgado, Pedro V. Silva
{"title":"自由群的子群的格:补和秩","authors":"Jordi Delgado, Pedro V. Silva","doi":"10.46298/jgcc.2020.12.1.6059","DOIUrl":null,"url":null,"abstract":"A $\\vee$-complement of a subgroup $H \\leqslant \\mathbb{F}_n$ is a subgroup $K\n\\leqslant \\mathbb{F}_n$ such that $H \\vee K = \\mathbb{F}_n$. If we also ask $K$\nto have trivial intersection with $H$, then we say that $K$ is a\n$\\oplus$-complement of $H$. The minimum possible rank of a $\\vee$-complement\n(resp. $\\oplus$-complement) of $H$ is called the $\\vee$-corank (resp.\n$\\oplus$-corank) of $H$. We use Stallings automata to study these notions and\nthe relations between them. In particular, we characterize when complements\nexist, compute the $\\vee$-corank, and provide language-theoretical descriptions\nof the sets of cyclic complements. Finally, we prove that the two notions of\ncorank coincide on subgroups that admit cyclic complements of both kinds.\nComment: 27 pages, 5 figures","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the lattice of subgroups of a free group: complements and rank\",\"authors\":\"Jordi Delgado, Pedro V. Silva\",\"doi\":\"10.46298/jgcc.2020.12.1.6059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A $\\\\vee$-complement of a subgroup $H \\\\leqslant \\\\mathbb{F}_n$ is a subgroup $K\\n\\\\leqslant \\\\mathbb{F}_n$ such that $H \\\\vee K = \\\\mathbb{F}_n$. If we also ask $K$\\nto have trivial intersection with $H$, then we say that $K$ is a\\n$\\\\oplus$-complement of $H$. The minimum possible rank of a $\\\\vee$-complement\\n(resp. $\\\\oplus$-complement) of $H$ is called the $\\\\vee$-corank (resp.\\n$\\\\oplus$-corank) of $H$. We use Stallings automata to study these notions and\\nthe relations between them. In particular, we characterize when complements\\nexist, compute the $\\\\vee$-corank, and provide language-theoretical descriptions\\nof the sets of cyclic complements. Finally, we prove that the two notions of\\ncorank coincide on subgroups that admit cyclic complements of both kinds.\\nComment: 27 pages, 5 figures\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2020.12.1.6059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2020.12.1.6059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

子组$H \leqslant \mathbb{F}_n$的$\vee$ -补码是子组$K\leqslant \mathbb{F}_n$,这样$H \vee K = \mathbb{F}_n$。如果我们还要求$K$与$H$有平凡的交点,那么我们说$K$是$H$的$\oplus$ -补。$\vee$ -补码的最小可能秩。$H$的$\oplus$ -补充)称为$\vee$ -corank(参见:$\oplus$ -corank)的$H$。我们使用斯托林斯自动机来研究这些概念以及它们之间的关系。特别地,我们描述了何时是互补的,计算了$\vee$ - ank,并提供了循环互补集的语言理论描述。最后,我们证明了两个秩的概念在两种循环补的子群上重合。点评:27页,5张图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the lattice of subgroups of a free group: complements and rank
A $\vee$-complement of a subgroup $H \leqslant \mathbb{F}_n$ is a subgroup $K \leqslant \mathbb{F}_n$ such that $H \vee K = \mathbb{F}_n$. If we also ask $K$ to have trivial intersection with $H$, then we say that $K$ is a $\oplus$-complement of $H$. The minimum possible rank of a $\vee$-complement (resp. $\oplus$-complement) of $H$ is called the $\vee$-corank (resp. $\oplus$-corank) of $H$. We use Stallings automata to study these notions and the relations between them. In particular, we characterize when complements exist, compute the $\vee$-corank, and provide language-theoretical descriptions of the sets of cyclic complements. Finally, we prove that the two notions of corank coincide on subgroups that admit cyclic complements of both kinds. Comment: 27 pages, 5 figures
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信