在模拟数据背景下ammi、w-ammi和gge方法的比较

Q4 Medicine
Danilo A. Sarti, C. Dias
{"title":"在模拟数据背景下ammi、w-ammi和gge方法的比较","authors":"Danilo A. Sarti, C. Dias","doi":"10.28951/RBB.V38I3.433","DOIUrl":null,"url":null,"abstract":"Genotype x environment interaction is a key issue in plant breeding and new cultivars development. The modelling of such interactions has huge importance to decisions in plant breeding and breeding program optimization. In this context AMMI, W-AMMI and GGE models claims to address such interactions. The present paper aims to check the behaviour of such models in face of data with well behaved parametric properties. The results shows that the three models are efficient to model GxE interactions.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"24 1","pages":"290"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARISON BETWEEN AMMI, W-AMMI AND GGE METHODOLOGY IN THE CONTEXT OF SIMULATED DATA\",\"authors\":\"Danilo A. Sarti, C. Dias\",\"doi\":\"10.28951/RBB.V38I3.433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genotype x environment interaction is a key issue in plant breeding and new cultivars development. The modelling of such interactions has huge importance to decisions in plant breeding and breeding program optimization. In this context AMMI, W-AMMI and GGE models claims to address such interactions. The present paper aims to check the behaviour of such models in face of data with well behaved parametric properties. The results shows that the three models are efficient to model GxE interactions.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"24 1\",\"pages\":\"290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/RBB.V38I3.433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V38I3.433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

基因型与环境的相互作用是植物育种和新品种开发的关键问题。这种相互作用的建模对植物育种决策和育种方案优化具有重要意义。在这种情况下,AMMI、W-AMMI和GGE模型声称解决了这种相互作用。本文旨在检验这些模型在面对具有良好参数属性的数据时的行为。结果表明,这三种模型都能有效地模拟GxE相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARISON BETWEEN AMMI, W-AMMI AND GGE METHODOLOGY IN THE CONTEXT OF SIMULATED DATA
Genotype x environment interaction is a key issue in plant breeding and new cultivars development. The modelling of such interactions has huge importance to decisions in plant breeding and breeding program optimization. In this context AMMI, W-AMMI and GGE models claims to address such interactions. The present paper aims to check the behaviour of such models in face of data with well behaved parametric properties. The results shows that the three models are efficient to model GxE interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信