Karla J. Julcapoma Polo, Heyssy L. Mendoza Campos, C. Olivera, Jorge Jave Nakayo, Jhonny W. Valverde Flores
{"title":"生物杀菌剂防治灰霉病和尖孢镰刀菌的实验室研究","authors":"Karla J. Julcapoma Polo, Heyssy L. Mendoza Campos, C. Olivera, Jorge Jave Nakayo, Jhonny W. Valverde Flores","doi":"10.3303/CET2187087","DOIUrl":null,"url":null,"abstract":"The use of fungicides based on plant extracts for the inhibition of phytopathogens has become a sustainable alternative for the environment. In this sense, research has developed biofungicides based on extracts of Allium cepa (A. cepa), Allium sativum (A. sativum), Zingiber officinale (Z. officinale) and Domestic Residual Oil (DRO) for the inhibition of Botrytis cinerea (B. cinerea) and Fusarium oxysporum (F. oxysporum). The inhibition of the two phytopathogenic fungi was evaluated in vitro, measuring the growth of mycelium of the fungi inoculated in the potato dextrose agar (PDA) culture medium, subjected to four treatments with three different doses (10, 15 and 20 %). The treatment that totally inhibited the mycelial growth of B. cinerea and F. oxysporum was the biofungicide composed by Z. officinale and domestic residual oil with a dose of 15 %. Finally, it is concluded that the use of the biofungicide is favorable for the control of fungi and could be used as an environmentally friendly alternative.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"19 1","pages":"517-522"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biofungicide for the Control of Botrytis Cinerea and Fusarium Oxysporum: a Laboratory Study\",\"authors\":\"Karla J. Julcapoma Polo, Heyssy L. Mendoza Campos, C. Olivera, Jorge Jave Nakayo, Jhonny W. Valverde Flores\",\"doi\":\"10.3303/CET2187087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of fungicides based on plant extracts for the inhibition of phytopathogens has become a sustainable alternative for the environment. In this sense, research has developed biofungicides based on extracts of Allium cepa (A. cepa), Allium sativum (A. sativum), Zingiber officinale (Z. officinale) and Domestic Residual Oil (DRO) for the inhibition of Botrytis cinerea (B. cinerea) and Fusarium oxysporum (F. oxysporum). The inhibition of the two phytopathogenic fungi was evaluated in vitro, measuring the growth of mycelium of the fungi inoculated in the potato dextrose agar (PDA) culture medium, subjected to four treatments with three different doses (10, 15 and 20 %). The treatment that totally inhibited the mycelial growth of B. cinerea and F. oxysporum was the biofungicide composed by Z. officinale and domestic residual oil with a dose of 15 %. Finally, it is concluded that the use of the biofungicide is favorable for the control of fungi and could be used as an environmentally friendly alternative.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"19 1\",\"pages\":\"517-522\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Biofungicide for the Control of Botrytis Cinerea and Fusarium Oxysporum: a Laboratory Study
The use of fungicides based on plant extracts for the inhibition of phytopathogens has become a sustainable alternative for the environment. In this sense, research has developed biofungicides based on extracts of Allium cepa (A. cepa), Allium sativum (A. sativum), Zingiber officinale (Z. officinale) and Domestic Residual Oil (DRO) for the inhibition of Botrytis cinerea (B. cinerea) and Fusarium oxysporum (F. oxysporum). The inhibition of the two phytopathogenic fungi was evaluated in vitro, measuring the growth of mycelium of the fungi inoculated in the potato dextrose agar (PDA) culture medium, subjected to four treatments with three different doses (10, 15 and 20 %). The treatment that totally inhibited the mycelial growth of B. cinerea and F. oxysporum was the biofungicide composed by Z. officinale and domestic residual oil with a dose of 15 %. Finally, it is concluded that the use of the biofungicide is favorable for the control of fungi and could be used as an environmentally friendly alternative.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering